"Искусственные нейронные сети. Теория и практика." - читать интересную книгу автора (Круглов В.В., Борисов В.В.)Контекстные нейроны
Вход Выход Выходной слой Скрытый слой ч Контекстные нейроны Вход Контекстные нейроны б) Рис 1 6 Частично-рекуррентные сети а - Элмана, б - Жордана 17 В слабосвязных нейронных сетях нейроны располагаются в узлах прямоугольной или гексагональной решетки Каждый нейрон связан с четырьмя (окрестность фон Неймана), шестью (окрестность Голея) или восемью (окрестность Мура) своими ближайшими соседями. Известные нейронные сети можно разделить по типам структур нейронов на гомогенные (однородные) и гетерогенные. Гомогенные сети состоят из нейронов одного типа с единой функцией активации, а в гетерогенную сеть входят нейроны с различными функциями активации. Существуют бинарные и аналоговые сети. Первые из них оперируют только двоичными сигналами, и выход каждого нейрона может принимать значение либо логического ноля (заторможенное состояние) либо логической единицы (возбужденное состояние). Еще одна классификация делит нейронные сети на синхронные и асинхронные. В первом случае в каждый момент времени лишь один нейрон меняет свое состояние, во втором - состояние меняется сразу у целой группы нейронов, как правило, у всего слоя. Алгоритмически ход времени в нейронных сетях задается итерационным выполнением однотипных действий над нейронами Далее будут рассматриваться только синхронные сети Сети можно классифицировать также по числу слоев. Теоретически число слоев и число нейронов в каждом слое может быть произвольным, однако фактически оно ограничено ресурсами компьютера или специализированных микросхем, на которых обычно реализуется нейронная сеть. Чем сложнее сеть, тем более сложные задачи она может решать. Выбор структуры нейронной сети осуществляется в соответствии с особенностями и сложностью задачи. Для решения отдельных типов задач уже существуют оптимальные конфигурации, описанные в приложении. Если же задача не может быть сведена ни к одному из известных типов, приходится решать сложную проблему синтеза новой конфигурации. При этом необходимо руководствоваться следующими основными правилами: • возможности сети возрастают с увеличением числа нейронов сети, плотности связей между ними и числом слоев; • введение обратных связей наряду с увеличением возможностей сети поднимает вопрос о динамической устойчивости сети; • сложность алгоритмов функционирования сети, введение нескольких типов синапсов способствует усилению мощности нейронной сети. 18 Вопрос о необходимых и достаточных свойствах сети для решения задач того или иного рода представляет собой целое направление нейрокомпьютерной науки. Так как проблема синтеза нейронной сети сильно зависит от решаемой задачи, дать общие подробные рекомендации затруднительно В большинстве случаев оптимальный вариант получается на основе интуитивного подбора, хотя в литературе приведены доказательства того, что для любого алгоритма существует нейронная сеть, которая может его реализовать. Остановимся на этом подробнее. Многие задачи распознавания образов (зрительных, речевых), выполнения функциональных преобразований при обработке сигналов, управления, прогнозирования, идентификации сложных систем, сводятся к следующей математической постановке. Необходимо построить такое отображение X -> У, чтобы на каждый возможный входной сигнал X формировался правильный выходной сигнал У. Отображение задается конечным набором пар (<вход>, <известный выход>). Число этих пар (обучающих примеров) существенно меньше общего числа возможных сочетаний значений входных и выходных сигналов. Совокупность всех обучающих примеров носит название обучающей выборки. В задачах распознавания образов X - некоторое представление образа (изображение, вектор), У - номер класса, к которому принадлежит входной образ. В задачах прогнозирования в качестве входных сигналов используются временные ряды, представляющие значения контролируемых переменных на некотором интервале времени. Выходной сигнал - множество переменных, которое является подмножеством переменных входного сигнала. При идентификации X и У представляют входные и выходные сигналы системы соответственно. Вообще говоря, большая часть прикладных задач может быть сведена к реализации некоторого сложного функционального многомерного преобразования. В результате отображения X -> У необходимо обеспечить формирование правильных выходных сигналов в соответствии: • со всеми примерами обучающей выборки; • со всеми возможными входными сигналами, которые не вошли в обучающую выборку. 19 Второе требование в значительной степени усложняет задачу формирования обучающей выборки В общем виде эта задача в настоящее время еще не решена однако во всех известных случаях может быть найдено частное решение 1.3.1. Теорема Колмогорова-Арнольда Построить многомерное отображение X -> У - это значит представить его с помощью математических операций над не более, чем двумя переменными Проблема представления функций многих переменных в виде суперпозиции функций меньшего числа переменных восходит 13-й проблеме Гильберта В результате многолетней научной полемики между А Н Колмогоровым и В И Арнольдом был получен ряд важных теоретических результатов, опровергающих тезис непредставимости функции многих переменных функциями меньшего числа переменных • теорема о возможности представления непрерывных функций нескольких переменных суперпозициями непрерывных функций меньшего числа переменных (1956 г), • теорема о представлении любой непрерывной функции трех переменных в виде суммы функций не более двух переменных (1957 г), • теорема о представлении непрерывных функций нескольких переменных в виде суперпозиций непрерывных функций одного переменного и сложения (1957 г) 1.3.2. Работа Хехт-Нильсена Теорема о представлении непрерывных функций нескольких переменных в виде суперпозиций непрерывных функций одного переменного и сложения в 1987 году была переложена Хехт-Нильсеном для нейронных сетей Теорема Хехт-Нильсена доказывает представимость функции многих переменных достаточно общего вида с помощью двухслойной нейронной сети с прямыми полными связями с п нейронами входного слоя, (2п+1) нейронами скрытого слоя с заранее известными ограниченными функциями активации (например, сиг-моидальными) и т нейронами выходного слоя с неизвестными функциями активации Теорема, таким образом, в неконструктивной форме доказывает решаемость задачи представления функции произвольного вида на нейронной сети и указывает для каждой задачи минимальные числа нейронов сети, необходимых для ее решения 20 1.3.3. Следствия из теоремы Колмогорова-Арнольда - Хехт-Нильсена Следствие 1 Из теоремы Хехт-Нильсена следует представимость любой многомерной функции нескольких переменных с помощью нейронной сети фиксированной размерности Неизвестными остаются следующие характеристики функций активации нейронов • ограничения области значений (координаты асимптот) сигмоидальных функций активации нейронов скрытого слоя, • наклон сигмоидальных функций активации, • вид функций активации нейронов выходного слоя |
|
© 2026 Библиотека RealLib.org
(support [a t] reallib.org) |