"Искусственные нейронные сети. Теория и практика." - читать интересную книгу автора (Круглов В.В., Борисов В.В.)a)
>s 0 6) ¦>' s) Рис 1 3 Примеры активационных функций а - функция единичного скачка, б - линейный порог (гистерезис), в - сигмоид (логистическая функция), г - сигмоид (гиперболический тангенс) ничного скачка с порогом в Из выражения для сигмоида очевидно, что выходное значение нейрона лежит в диапазоне (0, 1) Одно из ценных свойств сигмоидальной функции - простое выражение для ее производной, применение которой будет рассмотрено в дальнейшем f'(s) = af(s)[l-f(s)] (14) Следует отметить, что сигмоидальная функция дифференцируема на всей оси абсцисс, что используется в некоторых алгоритмах обучения Кроме того, она обладает свойством усиливать слабые сигналы лучше, чем большие, и предотвращает насыщение от больших сигналов, так как они соответствуют областям аргументов, где сигмоид имеет пологий наклон 1.3. Классификация нейронных сетей и их свойства Нейронная сеть представляет собой совокупность нейропо-добных элементов, определенным образом соединенных друг с другом и с внешней средой с помощью связей, определяемых весовыми коэффициентами В зависимости от функций, выполняемых нейронами в сети, можно выделить три их типа 13 • входные нейроны, на которые подается вектор, кодирующий входное воздействие или образ внешней среды; в них обычно не осуществляется вычислительных процедур, а информация передается с входа на выход путем изменения их активации, • выходные нейроны, выходные значения которых представляют выходы нейронной сети; преобразования в них осуществляются по выражениям (1.1) и (1.2); • промежуточные нейроны, составляющие основу нейронных сетей, преобразования в которых выполняются также по выражениям (1.1) и (1.2). В большинстве нейронных моделей тип нейрона связан с его расположением в сети. Если нейрон имеет только выходные связи, то это входной нейрон, если наоборот - выходной нейрон. Однако возможен случай, когда выход топологически внутреннего нейрона рассматривается как часть выхода сети. В процессе функционирования сети осуществляется преобразование входного вектора в выходной, некоторая переработка информации. Конкретный вид выполняемого сетью преобразования данных обусловливается не только характеристиками нейроподобных элементов, но и особенностями ее архитектуры, а именно топологией межнейронных связей, выбором определенных подмножеств нейроподобных элементов для ввода и вывода информации, способами обучения сети, наличием или отсутствием конкуренции между нейронами, направлением и способами управления и синхронизации передачи информации между нейронами. С точки зрения топологии можно выделить три основных типа нейронных сетей: • полносвязные (рис. 1.4, а); • многослойные или слоистые (рис. 1.4, б); • слабосвязные (с локальными связями) (рис. 1.4, в). В полносвязных нейронных сетях каждый нейрон передает свой выходной сигнал остальным нейронам, в том числе и самому себе. Все входные сигналы подаются всем нейронам. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети. В многослойных нейронных сетях нейроны объединяются в слои. Слой содержит совокупность нейронов с едиными входными сигналами Число нейронов в слое может быть любым и не зависит от количества нейронов в других слоях. В общем случае сеть состоит из Q слоев, пронумерованных слева направо. Внешние входные сигналы подаются на входы нейронов входного слоя (его часто нумеруют как нулевой), а выходами сети являются выходные 14 б) t t t e) Рис 1 4. Архитектуры нейронных сетей. а- полносвязная сеть, б- многослойная сеть с последовательными связями, в - слабосвязные сети сигналы последнего слоя. Кроме входного и выходного слоев в многослойной нейронной сети есть один или несколько скрытых слоев. Связи от выходов нейронов некоторого слоя q к входам нейронов следующего слоя (д+1) называются последовательными. В свою очередь, среди многослойных нейронных сетей выделяют следующие типы. 1) Монотонные. Это частный случай слоистых сетей с дополнительными условиями на связи и нейроны. Каждый слой кроме последнего (выходного) разбит на два блока: возбуждающий и тормозящий. Связи между блоками тоже разделяются на тормозящие и возбуждающие. Если от нейронов блока А к нейронам блока В ведут только возбуждающие связи, то это означает, что любой выходной сигнал 15 Входной слой Скрытый слой Выходной слой Рис 1 5 Многослойная (двухслойная) сеть прямого распространения блока является монотонной неубывающей функцией любого выходного сигнала блока А Если же эти связи только тормозящие, то любой выходной сигнал блока В является невозрастающей функцией любого выходного сигнала блока А Для нейронов монотонных сетей необходима монотонная зависимость выходного сигнала нейрона от параметров входных сигналов 2) Сети без обратных связей. В таких сетях нейроны входного слоя получают входные сигналы, преобразуют их и передают нейронам первого скрытого слоя, и так далее вплоть до выходного, который выдает сигналы для интерпретатора и пользователя. Если не оговорено противное, то каждый выходной сигнал q-ro слоя подастся на вход всех нейронов (д+1)-го слоя; однако возможен вариант соединения q-ro слоя с произвольным (q+p)-M слоем Среди многослойных сетей без обратных связей различают полносвязанные (выход каждого нейрона q-ro слоя связан с входом каждого нейрона (q+1)-ro слоя) и частично полносвязанные. Классическим вариантом слоистых сетей являются полносвязанные сети прямого распространения (рис. 1.5). 3) Сети с обратными связями В сетях с обратными связями информация с последующих слоев передается на предыдущие. Среди них, в свою очередь, выделяют следующие: • слоисто-циклические, отличающиеся тем, что слои замкнуты в кольцо, последний слой передает свои выходные сигналы первому; все слои равноправны и могут как получать входные сигналы, так и выдавать выходные; 16 • слоисто-полносвязанные состоят из слоев, каждый из которых представляет собой полносвязную сеть, а сигналы передаются как от слоя к слою, так и внутри слоя; в каждом слое цикл работы распадается на три части, прием сигналов с предыдущего слоя, обмен сигналами внутри слоя, выработка выходного сигнала и передача к последующему слою, • полносвязанно-слоистые, по своей структуре аналогичные слоисто-полносвязанным, но функционирующим по-другому: в них не разделяются фазы обмена внутри слоя и передачи следующему, на каждом такте нейроны всех слоев принимают сигналы от нейронов как своего слоя, так и последующих В качестве примера сетей с обратными связями на рис. 1 6 представлены частично-рекуррентные сети Элмана и Жордана. Выход Выход Выходной слой Скрытый слой s- |
|
© 2026 Библиотека RealLib.org
(support [a t] reallib.org) |