"Проблемы формы, систематики и эволюции организмов. М.: Наука, 1982" - читать интересную книгу автора (Любищев А.А.)

Сейчас оба направления мирно сосуществуют: конечно, химия - основа минералогии, но ведь геометрия - самостоятельная наука и лишь на основе геометрических методов, исходя из постулатов атомной теории, Федоров и мог построить полную систему возможных форм кристаллов. Что касается генетической классификации, отцом которой Денейер называет великого русского геохимика А. Е. Ферсмана, то это направление не стоит, конечно, ни в каком противоречии с химическим и геометрическим направлением: оно касается распределения минералов в зависимости от истории их возникновения в очагах минералообразования и имеет огромное утилитарное значение.

Означает ли это, что экологическое направление, связанное с именем Бюффона, окончательно устарело в минералогии и полностью вытеснено другими направлениями? Конечно, нет. Великолепная классификация Федорова показывает лишь те формы симметрии, в которых могут воплощаться кристаллы, и действительно, из этих рамок кристаллы никогда не выходят. Но в пределах кристаллографической системы имеется варьирование, зависящее от внешних условий. Возьмем, например, снежинки. Они всегда подчинены гексагональной симметрии, но колоссальное разнообразие форм снежинок связывают с различиями температуры и влажности во время их кристаллизации. Мне неизвестно, существует ли математическая теория связи форм снежинок с условиями их образования, но в общем виде задача построения математической теории форм кристаллов в связи с условиями образования, вероятно, настолько сложна, что для ее решения потребуется добрый десяток ученых масштаба Гаюи и Федорова.

А мыслим ли в кристаллографии исторический подход (в минералогии он указан А.Е. Ферсманом). Думаю, что да. Для этого достаточно внимательно рассмотреть узоры, которые мороз рисует на наших окнах. В них совсем незаметно гексагональной симметрии, хотя они тоже из льда: они скорее похожи на какие-то ветвящиеся растения. Решающую роль играют местные причины, обусловившие начало кристаллизации в определенной точке, от которой и растет ледяное растение, разветвляясь в силу каких-то местных причин. В минералогии сейчас две естественные системы - геометрическая и химическая. Обе не имеют ни исторического, ни иерархического характера, но при изложении, естественно, приходится пользоваться языком иерархической систематики.

Аналогичные споры ведутся в биологии. Конечно, в морфологии и систематике организмов экологический и исторический компоненты играют несравненно большую роль, чем в минералогии, и потому понятно, что точка зрения, повторяющая взгляды Бюффона, долгое время претендовала на монополию. Старые додарвиновские морфологические представления были почти забыты, а химическое обоснование органических форм считалось невозможным ввиду чрезвычайной сложности строения организмов. В настоящее время изумительные успехи генетики и молекулярной биологии вызвали к жизни уверенность многих выдающихся ученых, что все многообразие форм органического мира есть отображение многообразия ДНК (аналогия с точкой зрения Берцелиуса). Но морфологи (настоящие, в смысле Гете, но с прибавкой математизации, которой чуждался Гете) тоже не дремлют (подробнее см.: Любищев, 1962). Надеюсь, что в биологии будет достигнуто мирное сосуществование разных направлений, как и в минералогии, и что математически-морфологическое направление окажется ведущим.

Любопытная статья Кутрез (La classification dans les sciences, 1963) касается классификации звезд: эта проблема играла огромную роль в истории астрономии. Рациональная классификация исходит из состава звезд, и так как господствуют три компонента, то классификация, выработанная лишь в середине XX в., основана на трех параметрах. Эта классификация изображена автором на рисунке в виде пространственной диаграммы, где на поверхности нанесена сеть квазиортогональных кривых. Система не иерархическая, ее удобно назвать параметрической. Связь с историческим развитием звезд есть, но отнюдь не в форме генеалогического дерева.

Статья Леруа (в том же сборнике) о классификации в лингвистике имеет особый интерес потому, что Ч. Дарвин использовал лингвистические аналогии для пояснения генеалогического понимания системы организмов. Ч. Дарвин писал в то время, когда считалось, что все индоевропейские языки происходят путем последовательного разветвления единого праязыка. Хотя за пределами индоевропейских языков существует очень много других, но как-то подразумевалось, что поскольку человек имеет монофилетическое происхождение, то решительно все языки выводятся от какого-то первичного. Эту точку зрения поддерживал Антуан Мейе. Леруа указывает, что генеалогическая классификация приложима в лучшем случае к небольшой группе языков и что наряду с генеалогическим существует типологический подход, которому одно время был придан эволюционный характер. Кратко упоминаются и новые течения, связанные с именами Н.С. Трубецкого и Сапиро.

Таким образом, в лингвистике уже нет той исторической монополии системы языков, которая, видимо, существовала во времена Дарвина. Статья Тиммермана в сборнике касается только проблемы вида в химии и совершенно не касается характера системы. Однако именно периодическая система элементов имеет особенно важное значение для теории формы системы. Периодическая система - тоже параметрическая, с двумя параметрами, отчего ее изображают обычно в виде таблицы двух измерений, хотя правильнее изображать в виде винтовой линии на поверхности цилиндра.

До Д.И. Менделеева существовала иерархическая система элементов и многие таксоны этой системы были вполне естественны: щелочные, щелочно-земельные, платиновые металлы, галоиды, благородные газы и прочие. Есть группы плохо отграниченные (редкие земли), подобно тому как и в биологии имеются труднолокализуемые в системе группы. Сам Д.И. Менделеев, как известно, был убежден в постоянстве элементов, но сейчас его система объясняется современной теорией строения атомов, имеется и "филогения", но она не выводится из периодической системы. Существуют различные формы химических "мутаций": альфа-распад, бета-распад, деление ядра, синтез ядер. Открытие изотопов крайне усложнило периодическую систему (см., например, таблицу к статье "Изотопы" - БСЭ. 2-е изд., т. 51), связь элементов отнюдь не однозначна. Можно говорить о реальной конвергенции, параллелизме и т. д. Н.А. Морозов в интересной книге (1907), написанной в Шлиссельбургской крепости, находит аналогии и за пределами системы элементов; следует отметить, что он еще в 80-х годах предвидел группу благородных газов, изотопы и состав атомов из более элементарных частиц.

В отношении системы химических элементов можно сделать вывод:

1. естественная система носит параметрический, а не иерархический характер;

2. система и генеалогия-совершенно различные вещи;

3. эволюция в основном автогенетична, возможен эктогенез, но формообразование ограничено заранее (одна из форм номогенеза);

4. эволюция имеет много разных форм.

Напоследок коснемся математики, где как будто встречаем чисто иерархические классификации. Известна, например, классификация Эйлера алгебраических кривых, где различаются кривые первого, второго и т. д. порядков. Но в ней кривые первого порядка входят как частичный случай кривых второго порядка (при исчезновении одного параметра) и т. д. Нарушается, таким образом, одно из основных требований иерархической систематики: каждый элемент системы занимает только одно место в системе. Это имеет место и в других случаях. Кардиоида фигурирует и в системе конхоид круга, и в системе эпициклоид круга. И в математике (а, возможно, это общее правило) чисто иерархический подход является просто методом изложения и педагогическим приемом, причем при удачном подходе некоторые отделы иерархии могут оказаться вполне естественными. Иерархический подход заключает в себе много субъективного.

Другой формой субъективного подхода является комбинативный подход, несомненно в ряде случаев выделяющий вполне реальный принцип упорядочения многообразия. Но вряд ли в природе существует где-либо чисто комбинативная система, так как она основана на полной независимости и равноценности отдельных признаков. Однако выявление более или менее независимых направлений полезно для всякой предварительной классификации. Та же форма системы, к построению которой мы должны стремиться, является уравнением или системой уравнений с несколькими параметрами, позволяющими определить свойства элементов системы.

Эта задача уже в значительной степени разрешена в точных науках; данные, приведенные выше, позволяют надеяться решить эту задачу и в биологии. Против этого выдвигают два возражения. Первое, вполне серьезное - огромная трудность задачи. Но любопытно, что значительные успехи последних лет заставили ряд видных ученых перейти от чрезмерного скептицизма в отношении возможности математизации биологии к столь же, на мой взгляд, чрезмерному оптимизму: утверждению о принципиальной, а может быть даже о технической, возможности построения искусственных машин, во всех отношениях превосходящих человека. Эта последняя задача даже при возможности ее осуществления представляет, несомненно, гораздо большие трудности, чем построение математической системы. Эту наиболее совершенную форму системы полезно обозначить термином "параметрическая"; в работе 1923 г. я применял термин "коррелятивная", неудачность которого и тогда мне была ясна.

Второе принципиальное возражение сводится к тому, что номотетизация и математизация системы приводят к введению в биологию понятий, не допустимых по философским соображениям. Но как бы полезна философия ни была, она никогда не может стоять "над наукой" и отвергать или игнорировать факты, заставляющие пересмотреть привычные воззрения. История науки такой догматизм решительно осуждает.

НОМОГЕНЕТИКА ЭВОЛЮЦИИ

Номогенетическое направление в теории эволюции аналогично номотетическому в систематике. Для лучшего понимания полезно сказать несколько слов о классификации эволюционных теорий (Любищев, 1925). Поразительно, что многие серьезные биологи рассматривают споры о факторах эволюции как какую-то игру, где допускаются только два конкурента-дарвинизм (селекционизм) и ламаркизм, и показ невозможности - с точки зрения современной генетики - наследования приобретенных свойств рассматривают (методом исключения) как решительное доказательство селекционизма. На самом деле разнообразие теорий эволюции несравненно больше. Классификацию теорий эволюции можно провести в первом приближении, используя пары антитез, характеризующих те или иные различия во взглядах. Кроме затронутых в моей работе 1925 г. антитез (эволюция и эманация, или инволюция; эволюция и эпигенез; эволюция и революция), укажу следующие: номогенез и тихогенез; психогенез и гило- или механогенез; мерогенез (изолированное развитие) и гологенез (термин Д. Роза) - эволюция комплексов видов или географических ландшафтов; эктогенез и эндогенез: (автогенез); телогенез (приспособление - ведущая проблема. эволюции) и ателогенез. Эти антитезы отнюдь не независимы, но известной степенью независимости обладают и потому, в особенности при наличии разного понимания, например номогенеза и телогенеза, получается огромное количество возможных комплексных эволюционных теорий. В пользу каждого направления можно привести доводы, и в общем выделяется наличие в эволюционном процессе по крайней мере четырех достаточно независимых компонентов:

1. тихогенетический - эволюция на основе случайных непредвиденных мутаций;

2. номогенетический - наличие специфических законов развития или ограниченности формообразования;

3. эктогенетический - роль внешних факторов в эволюции;

4. телогенетический - роль активной адаптации.

Рассмотрим номогенетический компонент, имеющий непосредственное отношение к теории системы и достаточно гетерогенный. Понятие номогенеза можно разделить на два: учение об ограниченности формообразования и учение о направленных путях развития.

Ограниченность формообразования. Изменчивость во времена Дарвина считалась неограниченной, подобно "восковой пластичности". Это доказывалось тем, что любой признак показывал большую или меньшую изменчивость. Задолго до Менделя заметили, что при плодовитом скрещивании наблюдается какая-то особенно расшатанная изменчивость, как будто не подчиняющаяся никаким законам. Мендель этот мнимый хаос подчинил строгим математическим законам: при этом вместо восковой пластичности, допускающей бесконечно большое число возможных модальностей, мы получаем не только конечное, но даже не очень большое число их. Мендель в генетике сыграл роль Пифагора. Здесь мы видим ограниченность многообразия на самом низшем уровне. Несколько поднявшись по таксономическому уровню, мы встречаем закон гомологических рядов Н.И. Вавилова (1920). Третьей формой номогенеза в этом понимании можно считать то, что называется биохимическим номогенезом, например биохимические отличия первично- и вторичноротых. Важное вещество, используемое первичноротыми для построения наружного скелета - хитин - полностью отсутствует в двух главных типах вторичноротых - у иглокожих и позвоночных. У иглокожих и позвоночных развивается внутренний известковый скелет на соединительнотканной основе и сгибаемость корпуса или антимер получается от сочленения внутренних известковых элементов или позвонков (позвоночный столб позвоночных и руки офиур). Наличие хитина ведет к наружному скелету с метамерным расчленением, но оно же ведет к ряду других особенностей: отсутствие слизистых оболочек, невозможность построения глаза, подобного глазу позвоночных, и т.д. Не все первичноротые вступили на этот путь: у моллюсков хитин не развился (хотя в ограниченном размере он зарегистрирован), слизистые оболочки и глаза, подобные глазам позвоночных, имеются. Несомненно, что хитин возникал многократно, так как он найден у губок, гидроидов, мшанок, руконогих, моллюсков, кольчатых червей, членистоногих и даже у грибов. Нет серьезных оснований принимать монофилетическое происхождение этих организмов, и вполне вероятно, что химическое строение первичных архебионитов было связано с возможностью, легкостью или невозможностью образования хитина.