"Логика" - читать интересную книгу автора (Никифоров А.Л.)причину, а второе - следствие. Отсюда и названия членов импликации.
Представление высказываний естественного языка в символическом виде с помощью указанных выше обозначений означает их формализацию, которая во многих случаях оказывается полезной. 4) Прекрасный остров лежал в теплом океане. И все бы хорошо, да повадились на этом острове устраиваться на жительство чужестранцы. Едут и едут со всех концов света, уж коренных жителей стеснять стали. Дабы воспрепятствовать нашествию чужестранцев, правитель острова издал указ: "Всякий приезжий, желающий поселиться на нашем благословенном острове, обязан высказать какое-нибудь суждение. Если суждение окажется истинным, чужестранца следует расстрелять; если же суждение окажется ложным, его следует повесить". Боишься - тогда молчи и поворачивай восвояси! Спрашивается: какое нужно высказать суждение, чтобы остаться в живых и все-таки поселиться на острове? Таблицы истинности Теперь мы подошли к очень важному и трудному вопросу. Сложное суждение - это тоже мысль, которая что-то утверждает или отрицает и которая поэтому оказывается истинной или ложной. Вопрос об истинности простых суждений лежит вне сферы логики - на него отвечают конкретные науки, повседневная практика или наблюдение. Истинно или ложно суждение "Все киты - млекопитающие"? Нужно спросить биолога, и он скажет нам, что это суждение истинно. Истинно или ложно суждение "Железо тонет в воде"? Нужно обратиться к практике: бросим в воду какую-нибудь железку и убедимся, что это суждение Короче говоря, вопрос об истинности или ложности простых суждений в итоге всегда решается посредством обращения к той реальности, к которой они относятся. Но как установить истинность или ложность сложного суждения? Пусть у нас имеется некоторая конъюнкция "a & b" и нам известно, что суждение "a" истинно, а суждение "b" ложно. Что можно сказать об этом сложном высказывании в целом? Если бы в реальности существовал объект, к которому относится связка "&", то трудности не возникло бы: обнаружив этот объект, мы могли бы сказать: "Есть! Конъюнкция истинна!"; обшарив все вокруг и не обнаружив соответствующего объекта, мы бы констатировали: "Конъюнкция ложна". Но дело в том, что логическим связкам - как, впрочем, и союзам естественного языка - в реальности ничего не соответствует! Это изобретенные нами средства связи мыслей или предложений, это - орудия мышления, не имеющие аналогов в реальности. Поэтому вопрос об истинности или ложности высказываний с логическими связками - не вопрос конкретных наук или материальной практики, а чисто логический вопрос. И его решает логика. Мы договариваемся или принимаем соглашения относительно того, когда высказывания с той или иной логической связкой считать истинными, а когда - ложными. Конечно, в основе этих соглашений лежат некоторые рациональные соображения, однако важно иметь в виду, что это - наши произвольные соглашения, принятые в целях удобства, простоты, плодотворности, но не навязанные нам реальностью. Поэтому мы вольны изменять эти соглашения и делаем это, когда считаем нужным. Соглашения, о которых идет речь, выражаются таблицами истинности для |
|
|