"Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)" - читать интересную книгу автора (Грин Брайан)Глава 9. Дымящееся ружье: экспериментальные свидетельстваНичто не доставило бы специалисту по теории струн большего удовольствия, чем возможность гордо предъявить миру подробный список предсказаний, поддающихся экспериментальной проверке. Действительно, не существует способа убедиться, что та или иная теория действительно описывает наш мир, не подвергнув ее предсказания экспериментальной проверке. И неважно, какие восхитительные картины рисует теория струн — если она не описывает с хорошей точностью нашу Вселенную, она имеет не больше отношения к делу, чем навороченная компьютерная игра Однако, поскольку историю науки на нашей планете уже не перепишешь, многие считают сделанное задним числом предсказание гравитации неубедительным экспериментальным подтверждением теории струн. Большинство физиков в гораздо большей степени было бы удовлетворено одним из двух: либо чтобы теория струн дала обычное предсказание, поддающееся экспериментальной проверке, либо чтобы она дала истолкование каким-либо физическим свойствам (таким, как масса электрона или существование трех семейств элементарных частиц), для которых в настоящее время не существует объяснения. В этой главе мы расскажем, насколько далеко ученые, работающие в области теории струн, продвинулись в этом направлении. Ирония судьбы состоит в том, что хотя потенциально теория струн обещает стать по предсказательной силе Истинна ли теория струн? Мы не знаем этого. Если вы разделяете веру в то, что законы физики не должны делиться на законы, управляющие макромиром, и законы, диктующие правила для микромира, а также верите, что мы не должны останавливаться, пока у нас не будет теории с неограниченной областью применимости, тогда теория струн — ваша единственная надежда. Конечно, вы можете возразить, что такое утверждение свидетельствует скорее о недостатке воображения у физиков, чем о какой-то уникальности теории струн. Возможно. Вы можете также сказать, что подобно человеку, который ищет потерянные ключи под уличным фонарем, физики столпились вокруг теории струн просто потому, что по какому-то капризу в развитии науки в этом направлении упал случайный луч прозрения. Может быть. В конце концов, если вы по натуре консерватор или любите спор ради спора, вы даже можете сказать, что физики напрасно тратят время на теорию, которая постулирует новые свойства природы в масштабе, в несколько сот миллионов миллиардов раз меньшем того, который доступен экспериментальному исследованию. Если бы вы высказали эти упреки в середине 1980-х гг., когда возник первый всплеск интереса к теории струн, вы оказались бы в одной компании со многими самыми именитыми физиками того времени. Например, нобелевский лауреат Шелдон Глэшоу, работавший в Гарвардском университете, вместе с другим физиком Полом Гинспаргом, в то время также сотрудником Гарварда, публично обвинили теорию струн в невозможности экспериментальной проверки: «Вместо традиционного соревнования теории и эксперимента, специалисты по теории суперструн заняты поисками внутренней гармонии там, где критерием истинности являются элегантность, уникальность и красота. Само существование теории держится на магических совпадениях, чудесных сокращениях и связях между казавшихся несвязанными (и, возможно, еще и не открытыми) областями математики. Достаточно ли этих свойств, чтобы поверить в реальность суперструн? Могут ли математика и эстетика заменить и превзойти обычный эксперимент?»[80] В другом своем выступлении Глэшоу продолжил эту тему, сказав, что «...теория струн столь амбициозна, что она может быть либо целиком истинна, либо целиком ложна. Единственная проблема состоит в том, что ее математика настолько нова и сложна, что неизвестно, сколько десятилетий потребуется на ее окончательную разработку».[81] Он даже задавался вопросом, должны ли специалисты по теории струн «получать зарплату от физических факультетов, и позволительно ли им совращать умы впечатлительных студентов», предупреждая, что теория струн подрывает основы науки, во многом так, как это делала теология в средние века.[82] Ричард Фейнман незадолго до своей смерти дал ясно понять, что он не верит в то, что теория струн является единственным средством для решения проблем, в частности, катастрофических бесконечностей, препятствующих гармоничному объединению гравитации и квантовой механики: «По моим ощущениям — хотя я могу и ошибаться — существует не один способ решения этой задачи. Я не думаю, что есть только один способ, которым мы можем избавиться от бесконечностей. Тот факт, что теория позволяет избавиться от бесконечностей, не является для меня достаточным основанием, чтобы поверить в ее уникальность».[83] И Говард Джорджи, знаменитый коллега и сотрудник Глэшоу по Гарварду, в конце 1980-х гг. также был среди громогласных критиков теории струн: «Если мы позволим увлечь себя сладкоголосым сиренам, вешающим об "окончательном" объединении на расстояниях столь малых, что наши друзья-экспериментаторы не смогут помочь нам, мы попадем в беду, поскольку лишимся ключевого процесса отметания ошибочных идей, который выгодно отличает физику от многих других менее интересных видов человеческой деятельности».[84] Как и во многих других делах большой важности, на каждого скептика приходится энтузиаст. Виттен говорил, что когда он познакомился с тем, как теория струн объединяет гравитацию и квантовую механику, это стало «величайшим интеллектуальным потрясением» в его жизни.[85] Кумрун Вафа, ведущий специалист по теории струн из Гарвардского университета, утверждал, что «теория струн, несомненно, дает глубочайшее понимание мироздания, которого мы когда-либо достигали».[86] А нобелевский лауреат Мюррей Гелл-Манн сказал, что теория струн — «фантастическая вещь», и что он полагает, что один из вариантов этой теории однажды станет теорией всего мироздания.[87] Итак, как вы могли видеть, дебаты подогревались отчасти физикой, а отчасти философскими рассуждениями о том, какой должна быть физика. «Традиционалисты» желали, чтобы теоретические работы имели тесную связь с экспериментальными наблюдениями, в духе успешной научной деятельности в течение нескольких последних столетий. Другие считали, что нам по силам взяться за проблемы, экспериментальное изучение которых находится за пределами современных технических возможностей. Несмотря на различия в философских подходах, волна критики теории струн за последнее десятилетие существенно пошла на убыль. Глэшоу связывает это с двумя моментами. Во-первых, он заметил, что в середине 1980-х гг. «специалисты по теории струн с энтузиазмом и бьющим через край оптимизмом объявляли, что они вот-вот ответят на все вопросы физики. Сейчас, когда они стали более благоразумными, многие мои критические замечания середины 1980-х гг. потеряли свою актуальность».[88] Во-вторых, он также указал, что «мы, исследователи, работы которых не связаны с теорией струн, не добились сколько-нибудь существенного прогресса за последнее десятилетие. Поэтому аргумент, что теория струн является единственным игроком на этом поле, имеет под собой очень серьезное основание. Есть вопросы, на которые в рамках традиционной квантовой теории поля нельзя получить ответы. Это должно быть ясно. Ответы на них может дать кто-то другой, и единственный "другой", которого я знаю — это теория струн».[88] Джорджи вспоминал свои высказывания середины 1980-х гг. примерно в том же духе: «В разные времена на начальных этапах своего развития теория струн получала завышенные оценки. В последующие годы я обнаружил, что некоторые идеи теории струн ведут к интересным выводам, которые оказались полезны в моих собственных исследованиях. Теперь я с большей радостью наблюдаю, как люди посвящают свое время исследованиям в теории струн, поскольку вижу, что она способна дать нечто полезное».[89] Теоретик Дэвид Гросс, входящий в число лидеров как в традиционной физике, так и в теории струн, красноречиво подытожил ситуацию: «Обычно, когда мы карабкались на гору природы, прокладыванием пути занимались экспериментаторы. Мы, ленивые теоретики, плелись где-то сзади. Время от времени они сбрасывали вниз экспериментальный камень, который рикошетил от наших голов. Со временем мы находили объяснение и могли продолжать наш путь, который нам перекрыли экспериментаторы. Догнав наших друзей, мы объясняли им, с чем они столкнулись, и как они туда попали. Таков был старый и легкий (по крайней мере, для теоретиков) способ восхождения на горы. Нам всем хотелось бы, чтобы эти дни снова вернулись. Но теперь мы, теоретики, должны возглавить колонну. Это будет гораздо более одинокий путь».[90] Теоретики, занимающиеся струнами, не хотят совершать одиночное восхождение на самые высокие вершины природы; они предпочли бы разделить трудности и радости со своими коллегами-экспериментаторами. Сегодняшняя ситуация вызвана отставанием технологии, историческим разрывом: теоретические канаты и крючья для последнего штурма вершины готовы (по крайней мере, частично), а экспериментальные еще не существуют. Но это вовсе Без радикальных прорывов в технологии мы никогда не сможем получить доступ к ультрамикроскопическому масштабу расстояний, необходимому для прямого наблюдения струн. На ускорителе размером несколько километров физики могут проводить исследования на расстояниях порядка одной миллиардной от одной миллиардной доли метра. Изучение меньших расстояний требует более высоких энергий и, следовательно, более крупных ускорителей, способных сфокусировать достаточное количество энергии на отдельных частицах. Поскольку планковская длина примерно на 17 порядков меньше, чем длины, которые мы можем исследовать сегодня, для того чтобы увидеть струну при использовании современных технологий, нам потребуется ускоритель размером с Вспомним, что открытые физиками элементарные частицы разделяются на три семейства с идентичной организацией, при этом частицы каждого следующего семейства имеют все большую массу. Вопрос, на который до появления теории струн не было ответа, звучит так: « Рис. 9.1. Баранка (или тор) и ее кузены — торы с ручками. Канделас, Горовиц, Строминджер и Виттен провели тщательное исследование влияния этих отверстий на возможные моды колебаний струн, и вот что они установили. С каждым Вам может показаться, что число отверстий в свернутых измерениях планковских размеров — результат, стоящий поистине на вершине скалы современной физики, — может теперь столкнуть пробный камень эксперимента вниз, в направлении доступных нам сегодня энергий. В конце концов, экспериментаторы могут определить (на самом деле, уже определили) число семейств частиц: три. К несчастью, число отверстий в каждом из десятков тысяч известных многообразий Калаби-Яу изменяется в широких пределах. Некоторые имеют три отверстия. Но другие имеют четыре, пять, двадцать пять и т. д. — у некоторых число отверстий достигает даже 480. Число семейств частиц представляет собой лишь одно из экспериментальных следствий, вытекающих из геометрической формы дополнительных измерений. Благодаря влиянию на возможные моды колебаний струн, дополнительные размерности оказывают влияние на детальные свойства частиц-переносчиков взаимодействия и частиц вещества. Еще один важный пример, продемонстрированный в работе Строминджера и Виттена, состоит в том, что массы частиц в каждом семействе зависят от того — будьте внимательны, это тонкий момент, — как пересекаются и накладываются друг на друга границы различных многомерных отверстий в многообразии Калаби-Яу. Это явление с трудом поддается визуализации, но основная идея состоит в том, что когда струны колеблются в дополнительных свернутых измерениях, расположение отверстий и то, как многообразие Калаби-Яу обворачивается вокруг них, оказывает прямое воздействие на возможные моды резонансных колебаний. Детали этого явления довольно сложны и, на самом деле, не столь существенны; важно то, что как и в случае с числом семейств, теория струн дает основу для ответа на вопросы, по которым предыдущие теории хранили полное молчание, например, почему электрон и другие частицы имеют те массы, которые они имеют. Однако эти вопросы также требуют знания того, какой вид имеют дополнительные измерения, свернутые в пространства Калаби-Яу. Сказанное выше дало некоторое представление о том, каким образом теория струн может однажды объяснить приведенные в табл. 1.1 свойства частиц вещества. Физики, работающие в теории струн, верят, что таким же образом смогут однажды объяснить и свойства перечисленных в табл. 1.2 частиц, переносящих фундаментальные взаимодействия. Когда струны закручиваются и вибрируют в развернутых и свернутых измерениях, небольшая часть их обширного спектра колебаний представлена модами, соответствующими спину 1 или 2. Эти моды являются кандидатами на роль фундаментальных взаимодействий. Независимо от конфигурации пространства Калаби-Яу, всегда имеется одна безмассовая мода колебаний, имеющая спин 2; мы идентифицируем эту моду как гравитон. Однако точный список частиц-переносчиков взаимодействия, имеющих спин 1, — их число, интенсивность взаимодействия, которое они передают, их калибровочные симметрии очень сильно зависят от геометрической формы свернутых измерений. Таким образом, повторим, мы пришли к пониманию того, что теория струн дает схему, объясняющую существующий набор частиц, переносящих взаимодействие, т.е. объясняющую свойства фундаментальных взаимодействий. Однако, не зная точно, в какое многообразие Калаби-Яу свернуты дополнительные измерения, мы не можем сделать определенных предсказаний или «послесказаний» (выходящих за рамки замечания Виттена о «послесказании» гравитации). Почему мы не можем установить, какое из многообразий Калаби-Яу является «правильным»? Большинство теоретиков относит это к неадекватности теоретических инструментов, используемых в теории струн. В главе 12 мы покажем более подробно, что математический аппарат теории струн столь сложен, что физики способны выполнить только приближенные вычисления в рамках формализма, известного под названием Вы можете и так поставить вопрос: пусть неизвестно, какое из пространств Калаби-Яу выбирает теория струн, но позволяет ли какой-нибудь выбор получить физические характеристики, которые согласуются с наблюдаемыми? Другими словами, если мы рассчитаем физические характеристики, которые дает каждое возможное многообразие Калаби-Яу, и соберем их в один гигантский каталог, сможем ли мы найти среди них то, которое соответствует действительности? Это важный вопрос, однако есть две серьезные причины, по которым на него нельзя дать исчерпывающего ответа. Разумно было бы начать исследование, ограничившись только теми пространствами Калаби-Яу, которые дают три семейства частиц. Это значительно сокращает список возможных вариантов. Однако обратите внимание: мы можем деформировать тор с ручками из одной формы во множество других — на самом деле, в бесконечное множество — без изменения числа отверстий. На рис. 9.2 мы показали одну такую деформацию формы, приведенной в нижней части рис. 9.1. Рис. 9.2. Мы можем различными способами изменить форму тора с ручками, не меняя количества отверстий в нем; здесь показан один из таких способов. Аналогично можно взять пространство Калаби-Яу с тремя отверстиями и плавно изменить его форму без изменения числа отверстий, опять же через бесконечное число промежуточных форм. (Когда выше мы говорили о десятках тысяч многообразий Калаби-Яу, мы уже сгруппировали все те многообразия, которые могут быть преобразованы друг в друга путем таких плавных деформаций, и учитывали такие группы как одно пространство Калаби-Яу.) Проблема состоит в том, что физические свойства колебаний струн, а также соответствующие им массы и константы взаимодействий, очень сильно Осознание этого побудило специалистов по теории струн исследовать физику, порождаемую выборкой из возможных многообразий Калаби-Яу. Но даже в этом случае ситуация остается непростой. Приближенные уравнения, используемые учеными в настоящее время, имеют недостаточную мощность для того, чтобы получить полную и точную физическую картину, которую дает выбранное многообразие Калаби-Яу. Эти уравнения позволяют значительно продвинуться вперед в отношении приблизительной оценки свойств колеблющейся струны, которые, как мы надеемся, будут соответствовать наблюдаемым частицам. Но точные и определенные физические вопросы, подобные тому, какова масса электрона или интенсивность слабого взаимодействия, требуют уравнений, точность которых намного превосходит ту, которую дают современные приближенные схемы. Вспомните главу 6 и пример с Итак, где же мы находимся? Да, мы столкнулись с проблемой отсутствия фундаментального критерия выбора конкретного многообразия Калаби-Яу. Да, у нас нет теоретических средств, необходимых для вывода наблюдаемых характеристик, соответствующих такому выбору. Но мы можем спросить, а есть ли в каталоге пространств Калаби-Яу какие-либо элементы, которые дают картину мира, в основном согласующуюся с наблюдениями? Ответ на этот вопрос звучит достаточно обнадеживающе. Хотя большинство элементов каталога дают картину, которая существенно отличается от нашего мира (в ней, помимо всего прочего, другое число семейств элементарных частиц, а также иные типы и константы фундаментальных взаимодействий), небольшое число многообразий дает физическую картину, которая на качественном уровне Для современного уровня понимания это лучшее, на что мы могли рассчитывать. Если бы многие многообразия Калаби-Яу давали примерное совпадение с экспериментальными данными, связь между конкретным выбором и наблюдаемой физической картиной была бы менее убедительной. Когда предъявляемым требованиям соответствуют многие варианты, ни один из них нельзя выделить даже с привлечением экспериментальных данных. С другой стороны, если бы ни одно многообразие Калаби-Яу не давало ничего даже отдаленно похожего на наблюдаемую физическую картину, мы могли бы сказать, что теория струн, конечно, прекрасная теоретическая структура, но она, по-видимому, не имеет отношения к нашему миру. То, что даже при наших весьма скромных современных способностях определения детальных физических следствий удалось найти небольшое число пригодных пространств Калаби-Яу, является чрезвычайно обнадеживающим фактом. Объяснение свойств элементарных частиц и частиц-переносчиков фундаментальных взаимодействий было бы одним из великих, если не Препятствия на пути теоретических исследований, которые не позволяют в настоящее время использовать теорию струн для получения детальных предсказаний, вынуждают нас к поиску не конкретных, а Как мы уже отмечали, фундаментальное свойство теории струн состоит в том, что она обладает высокой симметрией, объединяя в себе не только наши интуитивные принципы симметрии, но и максимальное, с точки зрения математики, расширение этих принципов — суперсимметрию. Как говорилось в главе 7, это означает, что моды колебаний струны реализуются парами суперпартнеров, спин которых отличается на 1/2. Если теория струн верна, то некоторые из колебаний струн будут соответствовать известным частицам. Парность, связанная с суперсимметрией, позволяет теории струн сделать До настоящего времени никому не удавалось наблюдать суперпартнеров элементарных частиц. Это может означать, что они не существуют, и теория струн неверна. Однако по мнению многих специалистов по физике элементарных частиц это связано с тем, что суперпартнеры являются очень тяжелыми и поэтому не могут быть обнаружены на тех экспериментальных установках, которыми мы располагаем сегодня. В настоящее время физики сооружают гигантский ускоритель вблизи г. Женева в Швейцарии, получивший название Большого адронного коллайдера[93]. Есть надежда, что мощность этой установки будет достаточна для открытия частиц-суперпартнеров. Ускоритель должен вступить в действие к 2010 г., и вскоре после этого суперсимметрия может получить экспериментальное подтверждение. Как сказал Шварц: «До открытия суперсимметрии осталось ждать не так уж долго. И когда это случится, это будет волнующее событие».[94] Есть, однако, два момента, о которых следует помнить. Даже если частицы-суперпартнеры будут обнаружены, один этот факт недостаточен для того, чтобы утверждать истинность теории струн. Как мы видели выше, хотя суперсимметрия была открыта в ходе работ над теорией струн, она может быть успешно включена в теории, основанные на точечной модели частиц и, следовательно, не является уникальным признаком теории струн. И обратно, если даже частицы-суперпартнеры не будут обнаружены с помощью Большого адронного коллайдера, один этот факт еще не позволяет отрицать теорию струн, поскольку он может быть связан с тем, что суперпартнеры слишком тяжелы, чтобы их можно было обнаружить на такой установке. Тем не менее, если частицы-суперпартнеры будут обнаружены, несомненно, это будет сильное и вдохновляющее свидетельство в пользу теории струн. Другое возможное экспериментальное подтверждение теории струн, связанное с электрическим зарядом, является не столь фундаментальным, как существование суперпартнеров, но столь же удивительным. Ассортимент значений электрического заряда, который могут нести частицы в стандартной модели, очень ограничен: кварки и антикварки могут иметь (в единицах заряда электрона) положительный и отрицательный заряд, равный 1/3 и 2/3, а остальные частицы — 0, +1 и −1. Комбинации этих частиц образуют все известное вещество Вселенной. Однако теория струн допускает существование мод резонансных колебаний, которым соответствуют частицы с существенно иным электрическим зарядом. Например, электрический заряд частиц может принимать ряд экзотических дробных значений, таких как 1/5, 1/11, 1/13 или 1/53. Эти необычные заряды могут возникать в том случае, когда свернутые измерения обладают определенным геометрическим свойством — наличием таких отверстий, что намотанные вокруг них струны могут распутаться, только сделав определенное число витков.[95] Детали этого явления не столь важны, заметим только, что число оборотов, которое должна сделать струна, чтобы распутаться, появляется в допустимых модах колебаний в знаменателе дробного значения электрического заряда. Одни многообразия Калаби-Яу обладают этим геометрическим свойством, другие — нет, поэтому возможность дробных электрических зарядов не является такой фундаментальной, как существование частиц-суперпартнеров. С другой стороны, в то время как предсказание суперпартнеров не является эксклюзивной особенностью теории струн, десятилетия экспериментальных исследований не дали никакого повода ожидать, что столь экзотические электрические заряды могут существовать в какой-либо теории, основанной на точечной модели частиц. Конечно, их можно ввести в такие теории принудительно, но они там будут выглядеть так же уместно, как слон в посудной лавке. Возможность их объяснения из простых геометрических свойств, которые могут иметь дополнительные измерения, делает эти необычные электрические заряды естественным экспериментальным признаком теории струн. Как и в случае с суперпартнерами, частиц с таким экзотическим электрическим зарядом пока никому не удалось наблюдать, а современный уровень развития теории струн не позволяет сделать определенные выводы о массе, которую могут иметь эти частицы, если в силу свойств дополнительных измерений они действительно существуют. Объяснение того, что они до сих пор не открыты, опять же состоит в том, что если они существуют, их массы находятся за пределами современных технических возможностей обнаружения. Весьма вероятно, что они близки к планковской массе. Но если будущие эксперименты смогут обнаружить такие экзотические электрические заряды, это будет очень сильное свидетельство в пользу теории струн. Существуют и другие способы, которыми могут быть получены свидетельства истинности теории струн. Например, Виттен указал на то, что в один прекрасный день астрономы могут обнаружить в данных, которые они собирают, наблюдая за Вселенной, прямое свидетельство, оставленное теорией струн. Как указывалось в главе 6, обычно размер струн близок к планковской длине, однако струны, несущие большую энергию, могут вырасти до гораздо больших размеров. Энергия Большого взрыва могла быть достаточно высокой для образования небольшого числа крупных, макроскопических струн, которые в ходе расширения Вселенной могли вырасти до астрономических масштабов. Можно ожидать, что в наше время или когда-нибудь в будущем подобная струна пройдет по ночному небосводу, оказав несомненное и наблюдаемое влияние, которое будет зарегистрировано астрономами (например, небольшое смещение в температуре реликтового космического излучения, см. главу 14). Как однажды сказал Виттен: «Хотя это выглядит фантастично, но я бы предпочел именно такой сценарий подтверждения истинности теории струн — нельзя вообразить более волнующего способа решения вопроса, чем увидеть струну в телескоп».[96] Был предложен ряд других экспериментальных проверок теории струн на более близких к Земле расстояниях. Вот пять примеров. Во-первых, в табл. 1.1 мы отметили, что неизвестно, являются ли нейтрино очень легкими, или их масса в точности равна нулю. Согласно стандартной модели они являются безмассовыми, но это утверждение не имеет какого-либо глубокого обоснования. Теория струн могла бы принять этот вызов и дать истолкование известным фактам, касающимся нейтрино, и данным, которые могут быть получены в будущем. Особенно интересным было бы, если эксперименты, в конечном счете, показали, что нейтрино имеет небольшую, но ненулевую массу.[97] Во-вторых, имеются некоторые гипотетические процессы, которые запрещены стандартной моделью, но которые допустимы теорией струн. Среди них возможный распад протона (не переживайте по этому поводу, если это и происходит, то очень медленно), а также возможные превращения и распады некоторых комбинаций кварков, которые нарушают некоторые давно установленные свойства квантовой теории поля, основанной на точечной модели частиц.[98] Эти процессы особенно интересны тем, что их отсутствие в классической теории делает их индикаторами физических явлений, которые не могут быть учтены без использования новых теоретических принципов. Любой из этих процессов, если его удастся наблюдать, даст благодатную почву для объяснения с помощью теории струн. В-третьих, для некоторых пространств Калаби-Яу существуют моды резонансных колебаний, соответствующие новым взаимодействиям, поля которых отличаются небольшой интенсивностью и большим дальнодействием. Если будут обнаружены признаки существования этих новых взаимодействий, они могут быть истолкованы как отражение новых физических явлений, предсказываемых теорией струн. В-четвертых, как будет показано в следующей главе, астрономы собрали достаточно свидетельств в пользу того, что наша галактика и, возможно, вся Вселенная в целом, погружены в океан И, наконец, пятый возможный способ связать теорию струн с экспериментальными данными включает космологическую постоянную. Мы обсуждали ее в главе 3: она представляет собой дополнительный член, который был временно добавлен Эйнштейном к его первоначальным уравнениям общей теории относительности, чтобы обеспечить стационарность Вселенной. Хотя в дальнейшем открытие расширения Вселенной побудило Эйнштейна вернуть уравнениям их первоначальный вид, за прошедшее с тех пор время физики осознали, что не существует объяснения, История физики содержит немало примеров идей, которые в момент своего появления казались совершенно не поддающимися проверке, но впоследствии получили полное экспериментальное подтверждение в результате разработки методов, появление которых трудно было предвидеть. Тремя примерами таких выдающихся идей, которые в настоящее время общеприняты, но которые в момент своего появления казались скорее научно-фантастическими, чем научными, являются: идея о том, что вещество состоит из атомов; гипотеза Паули о существовании частиц-призраков — нейтрино и гипотеза о том, что небеса усеяны нейтронными звездами и черными дырами. Мотивы, которые привели к созданию теории струн, были не менее стимулирующими, чем в случае любой из трех идей, упомянутых выше, — в действительности, теория струн приветствовалась как наиболее важное и восхитительное достижение со времен появления квантовой механики. Это сравнение особенно уместно, поскольку история квантовой механики учит нас, что революции в физике легко могут затянуться на многие десятилетия, которые должны пройти, прежде чем новая теория достигнет зрелости. Между тем, если сравнивать современных специалистов по теории струн с физиками, которые были заняты разработкой квантовой механики, то у последних было большое преимущество: даже в незаконченной формулировке квантовая механика имела непосредственный контакт с экспериментальными данными. Несмотря на это, потребовалось около 30 лет на разработку логической структуры квантовой механики и еще примерно 20 лет на ее объединение со специальной теорией относительности. Мы заняты объединением квантовой механики и общей теории относительности, что представляет собой гораздо более сложную задачу, к тому же взаимодействие с экспериментом здесь очень затруднено. В отличие от тех, кто работал над квантовой механикой, ученые, которые сегодня занимаются разработкой теории струн, лишены яркого света природы, который дают детальные экспериментальные исследования и который направлял бы их шаг за шагом вперед. Это означает, что наше поколение физиков и, возможно, несколько следующих посвятят свою жизнь исследованиям и разработкам в области теории струн, не имея совершенно никакой обратной связи с экспериментом. Немалое число физиков, которые по всему миру ведут энергичные исследования в области теории струн, знают, что они идут на риск: усилия всей их жизни могут не принести окончательного подтверждения теории. Не вызывает сомнений, что прогресс в теоретических исследованиях будет оставаться значительным, но будет ли он достаточен для того, чтобы преодолеть существующие препятствия и сделать решающие, поддающиеся экспериментальной проверке предсказания? Помогут ли косвенные проверки, которые мы обсуждали выше, найти настоящее «дымящееся ружье» для теории струн? Эти вопросы очень важны для всех, кто занимается исследованиям в области теории струн, но дать на них ответ не может никто. Только время способно ответить на них. Чарующая простота теории струн, способ, которым она разрешает противоречие между гравитацией и квантовой механикой, ее способность объединить все компоненты мироздания и потенциально неограниченная предсказательная мощь — все это рождает вдохновение, оправдывающее риск. Эти высокие рассуждения постепенно находят все более основательное подкрепление благодаря способности теории струн открывать новые поразительные физические характеристики Вселенной, основанной на понятии струны, которые, в свою очередь, вскрывают тонкую и глубокую логику мироздания. Выражаясь языком, которым мы пользовались в этой главе, многие из этих характеристик являются общими принципами, которые станут фундаментальными свойствами построенной из струн Вселенной независимо от неизвестных сегодня деталей. Самые удивительные из них окажут глубокое влияние на наше постоянно развивающееся понимание пространства и времени. |
||||||
|