"Борис Воронцов-Вельяминов. Лаплас ("Жизнь замечательных людей" #119) " - читать интересную книгу авторапризнать его существование. Например, Лейбниц, соперник Ньютона в области
изобретения дифференциального и интегрального исчислений, писал Гюйгенсу: "Я не понимаю, как Ньютон представляет себе тяжесть или притяжение. По его мнению, повидимому, это не что иное, как некое необ'яснимое нематериальное качество". Гюйгенс, тогда уже широко известный своими работами по математике, физике и астрономии, отвечал Лейбницу: "Что касается причины приливов, которую дает Ньютон, то она меня не удовлетворяет нисколько, как и все другие его теории, которые он строит на своем принципе притяжения, который мне кажется нелепым". Еще в 1730 году Иоганн Бернулли получил премию от парижской Академии наук за попытку выяснить причину эллиптичности орбит планет, совершенно игнорируя закон тяготения. Оппозиция, с которой теория Ньютона была принята на континенте, стала ослабевать, когда расширенная парижская Академия приняла в свой состав много молодежи, более восприимчивой к новым идеям. В 1727 году молодой Вольтер, вернувшись из Англии на континент, со свойственным ему остроумным сарказмом так описал антагонизм научных взглядов, разделивших передовые страны его времени на два лагеря. "Если француз приедет в Лондон, он найдет здесь большое различие в философии, а также во многих других вопросах. В Париже он оставил мир, полным вещества, здесь он находит его пустым. В Париже вселенная наполнена эфирными вихрями, тогда как тут в том же пространстве действуют невидимые силы. В Париже давление Луны на море вызывает отлив и прилив, - в Англии же, наоборот, море тяготеет к Луне. У картезианцев все достигается давлением, что, по правде говоря, не вполне ясно, у ньютонианцев все об'ясняется притяжением, что, однако, немногим яснее. Наконец, в Париже Землю считают вытянутой у полюсов, Успехи ньютонианства Ньютон вполне строго разрешил проблему двух тел, т. е. вопрос о том, каково должно быть относительное движение двух тел под действием взаимного тяготения. Такой случай является идеализацией условий, имеющихся в солнечной системе. Какая-нибудь планета притягивается в действительности не только Солнцем, но и остальными планетами. В реальном мире мы имеем проблему не двух, а большего числа тел. Наиболее простым будет случай проблемы трех тел, но и эта проблема настолько сложна, что Ньютон не мог ее решить даже в самом общем виде. Однако все, сделанное им, было так грандиозно, потребовало такой затраты времени и сил, что ждать большего было невозможно. Вскоре выяснилось, что определение условия движения нескольких тел под действием взаимного тяготения требует несравненно более совершенного математического аппарата, чем тот, которым располагал Ньютон. Основную задачу небесной механики - изучение движения нескольких тел - можно разделить на две: одну, имеющую самый общий характер, и другую - непосредственно относящуюся к частному случаю солнечной системы. Первая значительно труднее, чем вторая. В солнечной системе масса Солнца в 770 раз больше массы всех планет вместе взятых, и потому движение их происходит в первом приближении, как говорят, в соответствии с решением проблемы двух тел, т. е. по законам Кеплера. Притяжение данной планеты остальными лишь немного расстраивает это движение. Движение немного отклоняется от законов Кеплера; например, орбита оказывается не эллипсом, а более сложной кривой, |
|
|