"Герберт Спенсер. Опыты научные, политические и философские. Том 2" - читать интересную книгу авторапонятие о силе, лежащее в основании всей механической астрономии,
заимствовано из наших земных опытов, и главные законы механического действия, обнаруживающегося на весах, рычагах, полете брошенных тел и т. п., должны были быть узнаны прежде, чем могла начаться динамика Солнечной системы. Какими законами пользовался Ньютон, вырабатывая свое великое открытие? Законом падения тел, открытым Галилеем; законом сложения сил, также открытым Галилеем; законом центробежной силы, определенным Гюйгенсам, - все это представляет обобщения земной физики. Однако и при этих фактах Конт ставит астрономию прежде физики в порядке развития! Он не сравнивает между собой геометрических частей той и другой и механических частей той и другой, потому что результат такого сравнения не подходил бы к его гипотезе. Он сравнивает геометрическую часть одной с механической частью другой и таким образом дает своему положению подобие истины. Он увлечен на ложный путь ошибкою в словах. Если б он сосредоточил свое внимание на вещах и пренебрегал словами, он увидел бы, что, прежде чем человечество научно привело в порядок какой бы то ни было класс явлений, представляющихся в небесах, оно предварительно привело в порядок параллельный класс явлений, представляющихся на поверхности земли. Если б нужно было, мы могли бы наполнить десятки страниц несообразностями Контова плана. Но предыдущих примеров будет достаточно. Его закон развития наук так несостоятелен, что, следуя примеру самого же Конта и произвольно игнорируя один класс фактов, можно будет представить весьма правдоподобное обобщение, которое будет прямо противоположно тому, какое он выражает. Тогда как он утверждает, что рациональный порядок наук, сходный с порядком их исторического развития, "определяется степенью простоты или - начиная со сложного и особенного, человечество идет постепенно к познанию более простого и более общего. На это существует так много доказательств, что Уэвелль, в своей Истории индуктивных наук, делает такого рода общее замечание: "Читатель уже много раз видел в изложении этой истории, что сложные и производные принципы представляются умам людей прежде простых и элементарных". Даже из собственного сочинения Конта можно выбрать много фактов, признаний, аргументов, показывающих то же самое. Мы уже ссылались на его слова в доказательство того, что как абстрактная, так и конкретная математика шла к высшей степени общности и что надо ожидать впереди еще более высокой общности. Чтобы усилить эту гипотезу, возьмем еще пример. От частного случая весов, закон равновесия которых был близко знаком самым древним народам, Архимед перешел к более общему случаю равно- или неравноплечего рычага, закон равновесия которого включает закон весов. При помощи Галилеева открытия относительно составления сил Д'Аламбер "установил в первый раз уравнения равновесия какой бы то ни было системы сил, приложенных в разных точках твердого тела", - уравнения, которые включают все случаи рычагов и бесчисленное множество других случаев. Ясно, что это прогресс к высшей общности, к познанию, более независимому от частных обстоятельств, к изучению явлений, "наиболее свободных от обстоятельств частного случая" и составляющих, по определению Конта, "самые простые явления". Из общепринятого факта, что умственный прогресс идет от конкретного к абстрактному, от частного к общему, - из одного этого факта не вытекает ли уже, что всеобщие и, следовательно, самые простые истины должны открываться после всех? Если мы когда-нибудь успеем возвести все порядки |
|
|