"Бертран Рассел. Логический атомизм" - читать интересную книгу автораэпистемологическим, а также и, наоборот, ассимиляции эпистемологического
порядка логическим. Единственный способ, посредством которого деятельность математической логики бросает свет на истинность или ложность математики, связан с опровержением предполагаемых антиномий. Это показывает, что математика может быть истинной. Но показать, что математика является истинной, потребует других методов и других рассуждений. Один из важных эвристических принципов, который Уайтхед и я нашли путем опыта для применения в математической логике и тем самым в других областях, представляет собой форму бритвы Оккама. Когда некоторое множество предполагаемых сущностей (entities) имеет чисто логические свойства, то оказывается, что в значительном большинстве случаев эти предполагаемые сущности могут быть заменены чисто логическими структурами, построенными из сущностей, которые не имеют таких чистых свойств. В подобном случае при интерпретации основной части утверждений, о которых до сих пор думали как: о предполагаемых объектах, мы можем заменить логические структуры, не изменяя в чем-либо детали этой части рассматриваемых утверждений. Это дает экономию, потому что сущности с чисто логическими свойствами всегда выводятся, и если утверждение, в котором они встречаются, может быть интерпретировано без этого вывода, тогда основание для вывода отпадает и наша основная часть утверждений не будет нуждаться в сомнительном шаге. Этот принцип может быть сформулирован в следующей форме "Всюду, где возможно, заменяйте конструкциями из известных сущностей выводы к неизвестным сущностям". Использование этого принципа весьма разнообразно, но непонятно в деталях для тех, кто не знает математическую логику. Первый раз, когда я с освобождения от абстракции". (Имеется в виду "Наше познание внешнего мира как поле для научного метода в философии" (1914) - прим. ред.). Этот принцип применим в случае любого симметричного и транзитивного отношения, такого, как равенство Мы склонны заключить, что подобные отношения возникают из наличия некоторого общего качества. Это может быть или не быть истинным, вероятно, оно истинно в одних случаях и не истинно в других. Однако всем формальным целям общего качества может служить членство в группе терминов, имеющих указанное отношение к данному термину. Возьмем, например, величину. Предположим, что мы имеем группу стержней одинаковой длины. Нетрудно предположить, что существует некоторое качество, названное их длиной, которое является для них общим. Но все утверждения, в которых это предполагаемое качество встречается, будут сохранять свое истинностное значение неизменным, если вместо "длины стержня х" мы возьмем членство группы всех тех стержней, которые имеют ту же длину, "что и х" В различных специальных случаях, например, при определении действительных чисел, возможна более простая конструкция. Самый важный пример этого принципа - определение Фреге кардинального числа данного множества элементов как класса всех множеств, которые "подобны" данному множеству, где два множества "подобны:", когда существует взаимно-однозначное соответствие, чьей областью служит одно множество, а обратной областью - другое множество. Таким образом, кардинальное число есть класс всех тех классов, которые подобны данному классу. Это |
|
|