"Статистика: учебное пособие" - читать интересную книгу автора1.1. Методы исследования однородности изучаемого объекта и типологическая группировкаОдной из отличительных черт бурного развития науки является широкое применение статистических методов и вычислительной техники в освоении информации. В настоящее время невозможно представить себе дисциплину, которая не пользовалась бы в процессе познания методами численного выражения закономерностей, связей, зависимости, измерения тенденции и т. д. Это, в частности, относится и к экономическим наукам. В статистической литературе большое внимание уделяется изучению и применению отдельных статистических методов и приемов, но совсем недостаточно освещены вопросы целесообразности и последовательности использования того или иного статистического метода, их комплексного применения, сочетания различных методов. Абсолютизация того или иного метода исследования ничего, кроме вреда, не приносит. Только сочетание различных методов может дать заметный эффект. Именно с этих позиций и нужно оценивать роль и место статистического моделирования в системе познания различных процессов и явлений. В данной работе предпринята попытка систематизировать методику комплексного применения статистических методов в экономических исследованиях, рассмотрена целесообразность и последовательность использования статических методов и приемов при анализе статических и динамических процессов. Первым этапом исследования является накопление (сбор) необходимых сведений об изучаемом объекте. Если наблюдений не очень много, то можно провести упорядочение, расположив их в порядке возрастания или убывания, т. е. построить ранжированные ряды. Если же наблюдений много, то приходится прибегать к их группировке. Статистические ряды носят самый разнообразный характер, имеют различное назначение и в разных целях могут использоваться в экономическом анализе. Одни статистические ряды являются вариационными рядами распределения. Эти ряды показывают распределение единиц изучаемой совокупности по отдельным группам, выделенным по какому-либо признаку. Другой разновидностью статистических рядов является последовательность чисел, отражающих величину того или иного показателя во времени. Это так называемые ряды динамики. Они позволяют анализировать изменение любых явлений во времени, об этом речь пойдет позже. Не умаляя значения временных рядов, следует отметить, что вариационным рядам распределения в статистическом анализе принадлежит особое место, ибо только при помощи распределения сложных совокупностей на качественно однородные группы можно изучать их структуру, соотношение между частями целого и т. п., без чего немыслим никакой экономический анализ. Ряды распределения могут строиться по качественным (атрибутивным) и по количественным признакам, по одному признаку и по нескольким, предоставляя тем самым широкие возможности исследователям при изучении сложных экономических явлений. Ряды распределения могут быть представлены либо в табличной форме, либо в геометрической, т. е. графической. Статистическая совокупность, представленная в виде ранжированного ряда распределения, графически изображается в виде огивы. Она строится так: на оси абсцисс наносятся номера элементов совокупности по ранжиру, а на оси ординат откладываются значения признака. Огива наглядно показывает интенсивность изменения изучаемого признака. Вариационные ряды распределения изображаются графически в виде полигонов и гистограмм. В виде полигонов обычно изображаются дискретные вариационные ряды распределения. При этом значения признака откладывают на оси абсцисс, а частоты (или частости) – на оси ординат. Вершины ординат соединяют прямыми линиями, в результате чего получают полигон (многоугольник). В виде полигона можно представить и интервальные вариационные ряды. Для этого за отдельные значения признака принимаются средние значения интервалов. Интервальные же вариационные ряды чаще всего изображают в виде гистограммы, в которой частоты выражают в виде прямоугольников соответствующей длины, а основания прямоугольников, опирающиеся на ось абсцисс, соответствуют интервалу значения признака (рис. 1). Рис. 1. Гистограмма и полигон распределения Различают одновершинные и многовершинные распределения. Многовершинность распределения, как правило, является признаком неоднородности изучаемой совокупности. Из разнообразия форм одновершинных кривых распределений можно выделить следующие наиболее характерные типы: симметричные, умеренно асимметричные, крайне асимметричные. В практике обычно редко встречаются идеально симметричные распределения, чаще умеренно асимметричные, в которых частоты с одной стороны от центра рассеивания уменьшаются заметно быстрее, чем с другой. Асимметричное распределение в пределе становится крайне асимметричным – в этом случае наибольшая частота расположена на одном из концов распределения. При решении некоторых вопросов удобнее пользоваться накопленными частотами распределения. Кривая накопленных частот распределения носит название «кумулята распределения». При построении кумуляты на оси абсцисс откладываются значения признака, на оси ординат – накопленные частоты. Построение вариационного ряда распределения и его графическое изображение позволяют получить первое представление о его наиболее характерных общих чертах. В то же время статистическое изучение совокупности не может ограничиться лишь простым упорядочением наблюдаемых величин. К тому же ряды распределения и их графики бывают довольно громоздкими, так как включают в себя всю исходную информацию. Поэтому наиболее рациональным путем статистического описания распределения будет вычисление определенных числовых характеристик, отражающих реальные свойства совокупности. К таким характеристикам прежде всего относятся характеристики центральной тенденции ряда распределения, т. е. нахождение его центрального значения; рассеивания значений признака относительно центра распределения; асимметрии и островершинности распределения. Изучение статистических характеристик распределений целесообразно начать с рассмотрения наиболее простых и в то же время чаще всего используемых в статистическом анализе, т. е. с изучения средних величин; затем научиться измерять вариацию, изучить меры скошенности и островершинности. Все эти показатели тех или иных особенностей распределения составляют единую систему статистических характеристик. Однако применение тех или иных статистических методов предполагает прежде всего однородность изучаемой совокупности: нельзя, например, анализировать совокупность, состоящую из разных категорий хозяйств, включающую предприятия разной специализации и т. д. Для успешного решения задач необходимо глубокое понимание сущности изучаемого процесса или явления. Учитывая сложность, неоднородность экономических явлений и процессов, необходимо производить анализ таким образом, чтобы наиболее существенные различия между отдельными группами явлений не затушевывались, а выделялись для более успешного их изучения. В то же время объединение в группы сходных однотипных явлений помогает выявить их черты и особенности, которые при изучении каждого явления отдельно могут оставаться незамеченными. Выделение в каждой совокупности общественно/экономических типов явлений – главное условие ее научного анализа. А это можно осуществить, только применяя метод типологических группировок. Массовые явления хозяйственной деятельности предприятий, являющиеся объектом статистического изучения, имеют сложный характер, обладают качественной общностью, свойственной данному явлению, но в то же время имеют и различия. Так, производством какой-либо продукции занимаются сельскохозяйственные предприятия и фермерские хозяйства и т. д. Стало быть, при характеристике производства данного вида продукции в регионе следует исходить из учета качественных особенностей предприятий, производящих эту продукцию, – в противном случае выводы будут неточными, а принимаемые на основании таких выводов решения – неэффективными. Типологическая группировка данных – основной прием изучения экономических явлений, обеспечивающий качественную сопоставимость единиц совокупности и дающий возможность получения обобщенного количественного значения признака. |
||||
|