"Е.М.Миркес. Учебное пособие по курсу Нейроинформатика " - читать интересную книгу авторапример, когда в двумерном пространстве множество объектов равномерно
распределено по сфере (окружности), причем объекты пронумерованы против часовой стрелке. В начальный момент времени ядра являются противоположно направленными векторами. Рис. 2. Положение ядер при последовательном предъявлении объектов со скоростью обучения 0,5. Состояние до обучения и после каждой эпохи обучения. Ниже приведен график изменения суммы квадратов изменений координат ядер. На рис. 2 приведены состояния сети Кохонена перед началом обучения и после каждой эпохи обучения. Эпохой принято называть полный цикл предъявления обучающего множества (всех объектов, по которым проводится обучение). Ядра на рисунках обозначены жирными линиями. Из рисунка видно, что обучение зациклилось - после каждой эпохи сумма квадратов изменений координат всех ядер то уменьшается, то возрастает. В литературе приводится целый ряд способов избежать зацикливания. Один из них - обучать с малым шагом. На рис. 3 приведены состояния сети при скорости обучения 0,01. Рис. 3. Положение ядер при последовательном предъявлении объектов со скоростью обучения 0,01. Состояние до обучения и после каждой эпохи обучения. Ниже приведен график изменения суммы квадратов изменений координат ядер. Из анализа рис. 3 видно, что изменения ядер уменьшаются со временем. Однако в случае изначально неудачного распределения ядер потребуется множество шагов для перемещения их к "своим" кластерам (см. рис. 4). Рис. 4. Обучение сети Кохонена со скоростью 0,01 (107 эпох) Следующая модификация алгоритма обучения состоит в постепенном уменьшении скорости обучения. Это позволяет быстро приблизиться к "своим" кластерам на высокой скорости и произвести доводку при низкой скорости. Для этого метода необходимым является требование, чтобы последовательность скоростей обучения образовывала расходящийся ряд, иначе остановка алгоритма будет достигнута не за счет выбора оптимальных ядер, а за счет ограниченности точности вычислений. На рис. 5 приведены состояния сети Кохонена при использовании начальной скорости обучения 0,5 и уменьшения скорости в соответствии с натуральным рядом (1, , -, ...). Уменьшение скорости обучения производилось после каждой эпохи. Из графика изменения суммы квадратов изменений координат ядер видно, что этот метод является лучшим среди рассмотренных. На рис. 6 приведены результаты применения этого метода в случае неудачного начального положения ядер. Распределение объектов выбрано то же, что и на рисунке 4 - два класса по 8 объектов, равномерно распределенных в интервалах [Пh/4,3 Пh/4] и [5Пh/4, 7Пh/4]. Рис. 5. Положение ядер при последовательном предъявлении объектов со снижением скорости обучения с 0,5 в соответствии с последовательностью 1/n. Состояние до обучения и после каждой эпохи обучения. Ниже приведен график изменения суммы квадратов изменений координат ядер (в логарифмической шкале). Рис. 6. Обучение сети Кохонена со снижением скорости с 0,5. Альтернативой методу с изменением шага считается метод случайного |
|
|