"Е.М.Миркес. Учебное пособие по курсу Нейроинформатика " - читать интересную книгу авторачтобы суммарная мера близости была минимальной. Суммарная мера близости
записывается в следующем виде: (1) где Ki - множество объектов i-го класса. Сеть Кохонена Сеть Кохонена для классификации на k классов состоит из k нейронов (ядер), каждый из которых вычисляет близость объекта к своему классу. Все нейроны работают параллельно. Объект считается принадлежащим к тому классу, нейрон которого выдал минимальный сигнал. При обучении сети Кохонена считается, что целевой функционал не задан (отсюда и название "Обучение без учителя"). Однако алгоритм обучения устроен так, что в ходе обучения минимизируется функционал (1), хотя и немонотонно. Обучение сети Кохонена Предложенный финским ученым Кохоненом метод обучения сети решению такой задачи состоит в следующем. Зададим некоторый начальный набор параметров нейронов. Далее предъявляем сети один объект x. Находим нейрон, выдавший максимальный сигнал. Пусть номер этого нейрона i. Тогда параметры нейрона модифицируются по следующей формуле: aiв=О"x+(1-О")ai (2) после очередного цикла предъявления всех объектов не окажется, что параметры всех нейронов изменились на величину меньшую наперед заданной точности Оu. В формуле (2) параметр О" называют скоростью обучения. Для некоторых мер близости после преобразования (2) может потребоваться дополнительная нормировка параметров нейрона. Сеть Кохонена на сфере Рис 1. Три четко выделенных кластера в исходном пространстве сливаются полностью (а) или частично (б) при проецировании на единичную сферу. Одним из наиболее распространенных и наименее удачных (в смысле практических применений) является сферическая сеть Кохонена. В этой постановке предполагается, что все вектора-объекты имеют единичную длину. Ядра (векторы параметров нейронов) также являются векторами единичной длины. Привлекательность этой модели в том, что нейрон вычисляет очень простую функцию - скалярное произведение вектора входных сигналов на вектор параметров. Недостатком является большая потеря информации во многих задачах. На рис. 1 приведен пример множества точек разбитого на три четко выделенных кластера в исходном пространстве, которые сливаются полностью или частично при проецировании на единичную сферу. Эта модель позволяет построить простые иллюстрации свойств обучения сетей Кохонена, общие для всех методов. Наиболее иллюстративным является |
|
|