"Уильям Крейг. Самое начало (Происхождение Вселенной и существование Бога) " - читать интересную книгу авторакниг только одного цвета.
Продолжим наши рассуждения. Предположим, что у каждой книги на корешке отпечатан номер. Поскольку библиотека реально бесконечна, каждое возможное число отпечатано на какой-либо из книг. Поэтому мы не можем добавить к библиотеке еще одну книгу, ибо какой номер ей дать? Все номера уже заняты. Таким образом, новой книге нельзя дать номера! Но это абсурд, так как в действительности предметы всегда можно нумеровать. Если бы бесконечная библиотека существовала, то к ней невозможно было бы добавить еще одну книгу. (Не потому ли, что она уже включала бы все существующие книги, и новую просто неоткуда было бы взять? Нет, ведь достаточно вырвать по листку из каждой книги первой сотни, склеить их вместе, поставить эту новую книгу на полку, и все - библиотека пополнена!) Поэтому напрашивается единственно возможный вывод: библиотека, актуально бесконечная, - существовать не может. Но предположим, что мы можем пополнить эту библиотеку, и я ставлю книгу на полку. По утверждению математиков, число книг в библиотеке осталось прежним. Как это может быть? Ведь мои опыт говорит: если я поставил книгу на полку, то там стало книгой больше, а если снял, то одной меньше. Мне легко вообразить себя, ставящего и снимающего эту книгу. Должен ли я впрямь всерьез поверить, что когда я добавляю книги, их число не увеличивается, а когда убираю - не уменьшается? А если я добавлю к этой библиотеке бесконечное число или даже бесконечность бесконечностей книг? Неужели и теперь в библиотеке ни на одну книгу не больше, чем прежде? Мне в это трудно поверить. А вам? А теперь давайте, наоборот, выдавать книги из библиотеки. Предположим, на одну? Во вторник - выдадим все книги с нечетными номерами. Ушло бесконечное число книг, но математики скажут, что в библиотеке книг меньше не стало. Допустим, что в среду мы выдали книги за номерами 4, 5, 6,.. и до бесконечности. Единым махом библиотека практически вся опустела, бесконечное число книг сведено к конечному: к трем. Но позвольте, ведь мы на этот раз выдали столько же книг, что и во вторник! Почему же такая разница? И кто поверит, что такая библиотека может на самом деле существовать? Все эти примеры иллюстрируют тот факт, что актуальная бесконечность не может иметь места в физическом мире. Я вновь хочу подчеркнуть: это ничем не грозит теоретической системе, введенной в современную математику Г. Кантором. Больше того: даже такие энтузиасты математических теорий бесконечного, как Д. Гилберт, охотно соглашаются с тем, что понятие актуальной бесконечности - это только идея, не имеющая никакого отношения к реальному миру.26 Поэтому - мы вправе заключить: актуальная бесконечность существовать не может. Вторая посылка: Ряд событий во времени, не имеющий начала, представляет собой актуальную бесконечность. Под "событием" я подразумеваю любую перемену, происходящую в физическом мире. То есть: если ряд прошлых событий (или перемен) все время уходит в прошлое и никогда не имеет начала, то в этом случае, взятые все вместе, эти события составляют актуально бесконечное множество. Допустим, мы спрашиваем, откуда появилась такая-то звезда. Нам отвечают, что она появилась в результате взрыва звезды, существовавшей до |
|
|