"Ричард Фейнман. Surely You're Joking, Mr. Feynman!/Вы, конечно, шутите, мистер Фейнман! (англ.)" - читать интересную книгу автора

if the back mutations occurred in the same place on the DNA spiral. With
great care and a lot of tedious work I was able to find three examples of
back mutations which had occurred very close together - closer than
anything they had ever seen so far - and which partially restored the
phage's ability to function. It was a slow job. It was sort of accidental:
You had to wait around until you got a double mutation, which was very rare.
I kept trying to think of ways to make a phage mutate more often and
how to detect mutations more quickly, but before I could come up with a good
technique the summer was over, and I didn't feel like continuing on that
problem.
However, my sabbatical year was coming up, so I decided to work in the
same biology lab but on a different subject. I worked with Matt Meselson to
some extent, and then with a nice fella from England named J. D. Smith. The
problem had to do with ribosomes, the "machinery" in the cell that makes
protein from what we now call messenger RNA. Using radioactive substances,
we demonstrated that the RNA could come out of ribosomes and could be put
back in.
I did a very careful job in measuring and trying to control everything,
but it took me eight months to realize that there was one step that was
sloppy. In preparing the bacteria, to get the ribosomes out, in those days
you ground it up with alumina in a mortar. Everything else was chemical and
all under control, but you could never repeat the way you pushed the pestle
around when you were grinding the bacteria. So nothing ever came of the
experiment.
Then I guess I have to tell about the time I tried with Hildegarde
Lamfrom to discover whether peas could use the same ribosomes as bacteria.
The question was whether the ribosomes of bacteria can manufacture the
proteins of humans or other organisms. She had just developed a scheme for
getting the ribosomes out of peas and giving them messenger RNA so that they
would make pea proteins. We realized that a very dramatic and important
question was whether ribosomes from bacteria, when given the peas' messenger
RNA, would make pea protein or bacteria protein. It was to be a very
dramatic and fundamental experiment.
Hildegarde said, "I'll need a lot of ribosomes from bacteria."
Meselson and I had extracted enormous quantities of ribosomes from E.
coli for some other experiment. I said, "Hell, I'll just give you the
ribosomes we've got. We have plenty of them in my refrigerator at the lab."
It would have been a fantastic and vital discovery if I had been a good
biologist. But I wasn't a good biologist. We had a good idea, a good
experiment, the right equipment, but I screwed it up: I gave her infected
ribosomes - the grossest possible error that you could make in an
experiment like that. My ribosomes had been in the refrigerator for almost a
month, and had become contaminated with some other living things. Had I
prepared those ribosomes promptly over again and given them to her in a
serious and careful way, with everything under control, that experiment
would have worked,, and we would have been the first to demonstrate the
uniformity of life: the machinery of making proteins, the ribosomes, is the
same in every creature. We were there at the right place, we were doing the
right things, but I was doing things as an amateur - stupid and sloppy.
You know what it reminds me of? The husband of Madame Bovary in