"Ричард Фейнман. Surely You're Joking, Mr. Feynman!/Вы, конечно, шутите, мистер Фейнман! (англ.)" - читать интересную книгу автора

student who was looking for a "map of the cat."
When it came time for me to give my talk on the subject, I started off
by drawing an outline of the cat and began to name the various muscles.
The other students in the class interrupt me: "We know all that!"
"Oh," I say, "you do? Then no wonder I can catch up with you so fast
after you've had four years of biology." They had wasted all their time
memorizing stuff like that, when it could be looked up in fifteen minutes.
After the war, every summer I would go traveling by car somewhere in
the United States. One year, after I was at Caltech, I thought, "This
summer, instead of going to a different place, I'll go to a different
field."
It was right after Watson and Crick's discovery of the DNA spiral.
There were some very good biologists at Caltech because Delbrck had his lab
there, and Watson came to Caltech to give some lectures on the coding
systems of DNA. I went to his lectures and to seminars in the biology
department and got full of enthusiasm. It was a very exciting time in
biology, and Caltech was a wonderful place to be.
I didn't think I was up to doing actual research in biology, so for my
summer visit to the field of biology I thought I would just hang around the
biology lab and "wash dishes," while I watched what they were doing. I went
over to the biology lab to tell them my desire, and Bob Edgar, a young
post-doc who was sort of in charge there, said he wouldn't let me do that.
He said, "You'll have to really do some research, just like a graduate
student, and we'll give you a problem to work on." That suited me fine.
I took a phage course, which told us how to do research with
bacteriophages (a phage is a virus that contains DNA and attacks bacteria).
Right away I found that I was saved a lot of trouble because I knew some
physics and mathematics. I knew how atoms worked in liquids, so there was
nothing mysterious about how the centrifuge worked. I knew enough statistics
to understand the statistical errors in counting little spots in a dish. So
while all the biology guys were trying to understand these "new" things, I
could spend my time learning the biology part.
There was one useful lab technique I learned in that course which I
still use today. They taught us how to hold a test tube and take its cap off
with one hand (you use your middle and index fingers), while leaving the
other hand free to do something else (like hold a pipette that you're
sucking cyanide up into). Now, I can hold my toothbrush in one hand, and
with the other hand, hold the tube of toothpaste, twist the cap off, and put
it back on.
It had been discovered that phages could have mutations which would
affect their ability to attack bacteria, and we were supposed to study those
mutations. There were also some phages that would have a second mutation
which would reconstitute their ability to attack bacteria. Some phages which
mutated back were exactly the same as they were before. Others were not:
There was a slight difference in their effect on bacteria - they would act
faster or slower than normal, and the bacteria would grow slower or faster
than normal. In other words, there were "back mutations," but they weren't
always perfect; sometimes the phage would recover only part of the ability
it had lost.
Bob Edgar suggested that I do an experiment which would try to find out