"Ткань космоса: Пространство, время и текстура реальности" - читать интересную книгу автора (Грин Брайан)
Классическая реальность
Историки расходятся в том, когда началась современная научная эпоха, но, несомненно, начало ей положили труды Галилео Галилея, Рене Декарта и Исаака Ньютона. В те дни был заложен новый метод изучения природы — научный подход, возникший благодаря тому, что данные, полученные в ходе наблюдений земных и небесных явлений, всё больше указывали — всё происходящее в космосе подчиняется строгому порядку, описываемому на языке математического анализа. Пионеры современного научного мышления приводили доводы в пользу того, что происходящее во Вселенной можно не только объяснять, но и предсказывать, если встать на правильную точку зрения. Была открыта предсказательная сила науки — способность предсказывать моменты будущего, причём делать это согласовано и количественно.
Первые научные исследования фокусировались на том, что можно было видеть или ощущать в повседневной жизни. Галилей сбрасывал предметы разного веса с наклонной башни (как гласит легенда) и наблюдал за скатыванием шаров по наклонной плоскости; Ньютон наблюдал за падением яблок (как гласит легенда) и изучал орбиту Луны. Целью этих исследований было настроить зарождающийся научный слух на гармонию природы. Конечно, объектом опытов служила физическая реальность, но ставилась задача уловить гармонию и причину ритмичности и регулярности явлений. Много воспетых и безвестных героев внесли свой вклад в быстрый и впечатляющий прогресс, но Ньютон затмил всех. С помощью нескольких уравнений он описал всё известное о движении на Земле и в небесах и тем самым положил начало классической физике.
За десятилетия, последовавшие за работой Ньютона, его уравнения были включены в стройную математическую структуру, что существенно расширило как их охват, так и их практическую ценность. Классическая физика постепенно становилась утончённой и зрелой научной дисциплиной. Но путеводной звездой для всех этих достижений были прозрения Ньютона. Даже сегодня, более чем триста лет спустя, уравнения Ньютона можно видеть на университетских досках по всему миру; по этим уравнениям рассчитываются траектории движения космических аппаратов, и те же уравнения Ньютона можно встретить в сложных расчётах на переднем крае науки. Ньютон описал многообразие физических явлений в рамках единого теоретического подхода.
Но, формулируя свои законы движения, Ньютон наткнулся на трудную проблему, которая будет особенно важна в нашей истории (глава 2). Все знают, что объекты могут двигаться, но как насчёт арены, на которой происходит движение? Это пространство, — ответим мы хором. Но что такое пространство? — спросил бы далее Ньютон. Является ли пространство реальной физической сущностью или оно представляет собой абстрактную идею, рождённую в ходе человеческого усилия понять космос? Ньютон сознавал, что надо ответить на этот ключевой вопрос, ведь иначе, без опоры на понятия пространства и времени, его уравнения движения окажутся попросту бессмысленными. Понимание требует контекста; прозрение должно иметь под собой твёрдую почву.
В нескольких предложениях в «Математических началах натуральной философии» Ньютон изложил свою концепцию пространства и времени, объявив их абсолютными и вечными сущностями, предоставляющими для Вселенной жёсткую и неизменную арену. Согласно Ньютону, пространство и время образуют невидимый каркас, придающий форму и структуру Вселенной.
Но не все согласились. Некоторые убедительно возражали, что не очень-то разумно приписывать существование тому, что невозможно почувствовать или ухватить или на что невозможно повлиять. Но сила объяснений и предсказаний на основе уравнений Ньютона усмирила критиков. В течение следующих двух столетий его концепция абсолютного пространства и времени утвердилась как догма.