"Портрет трещины" - читать интересную книгу автора (Финкель Виктор Моисеевич)

ТРЕЩИНЕ ПОЛЕЗНО ВОЛНОВАТЬСЯ

Стремите, волны, свой могучий бег! Д.-Г. Байрон

В одном из кинофильмов рассказано, как пытались ост тановить буровзрывные работы в горном районе, которые могли испортить трещинами ценные монолиты гранита и мрамора. Ясно, что прорастание трещин здесь вызывалось бы упругими волнами, возникавшими в очаге взрыва и распространявшимися от него на большие расстояния. Нас. это не удивляет.'Ведь при каждом взрыве вулкана возникающие волны способны многократно огибать земной шар и приводить, порой, к невероятным разрушениям. Понятно поэтому, что упругие волны способны не только вызывать появление трещин, но и решительным образом влиять на характер их распространения.

Какие же упругие волны существуют? Обычно различают волны продольные, поперечные и поверхностные. Кроме того, их делят на два типа. К одному из них относятся стационарные, то есть подлинные волны с многократно повторяющимися гребнями и впадинами. В та-

ких волнах упругие возмущения идут одно за другим, никогда не прекращающейся чередой:

…За волною – волна, точно всадник – за всадником…

(М. Квливидзе)

В продольной волне такого «непрерывного» типа вещество сжимается в направлении распространения волны. Допустим, что волна падает нормально к плоскости трещины. Ясно, что она будет сжимать берега и тормозить разрушение. А что произойдет, если эта волна пойдет по одному из берегов трещины, вдоль нее, по направлению к устью? Тогда эта часть материала окажется сжатой и трещина будет отворачиваться от нее. Между этими двумя случаями и лежит бездна углов падения волны на трещину. Меняя их, можно широко изменять характер влияния упругих возмущений на распространение быстрой трещины.

Допустим теперь, что волна по-прежнему продольная, но переносит она напряжения растяжения. Тогда при нормальном, то есть перпендикулярном падении на поверхность трещины возникло бы дополнительное растяжение, а разрушение ускорялось. При распространении такой волны по одному из берегов трещина поворачивала бы в эту же сторону. При произвольном угле падения трещина ориентируется всегда нормально к направлению волны растяжения.

Обратимся далее к поперечным стационарным волнам. В них возникают поперечные сдвиговые напряжения. Поэтому в подавляющем большинстве случаев волны эти так или иначе разворачивают разрушение.

Итак, все стационарные волновые явления активно влияют на движение трещины и способны не только тормозить и ускорять ее, но и переориентировать по своему желанию.

Многократно вводя энергию в окрестности вершины разреза, волна способна за длительное время контакта не только изменить поле напряжений, но и самым решительным образом – траекторию разрушения.

Особенно преуспевают в этом поверхностные волны, распространяющиеся в плоскости самой трещины. Мы уже говорили, что они с увеличением расстояния ослабляются меньше, нежели продольные и поперечные. Кро-

ме того, волна, идущая по трещине, как по волноводу, подводит всю свою энергию прямо к вершине в отличие от продольных и поперечных, подходящих к устью трещины лишь частью своего фронта. Следовательно, коэффициент полезного действия поверхностной волны выше. Как же реагирует трещина на появление в своей вершине рэлеевских волн? Если эти волны бегут «ноздря к ноздре» по обоим берегам трещины, разрушение ускоряется в своей плоскости. Иное дело, если волна «струится» по одному из берегов. В ней точки колеблются в плоскости, нормальной к поверхности трещины. При этом каждая из них движется по эллипсу точно так, как перемещаются они в волне на поверхности воды. Ведь никого не удивляет, что море выбрасывает предметы на сушу. Если бы точки двигались только вверх и вниз, этого не случилось бы. Поэтому в рэлеевской волне возникают сдвиговые напряжения под прямым углом к скорости трещины. Опыт, проведенный И. С. Гузем и автором этой книги на трещине, скорость которой составляла 1 км/с, подтвердил разворот на 80-85°.

Было бы упущением не упомянуть здесь о волнах еще одного вида – изгибных. Они наиболее часто образуются в твердых телах. Именно такого рода нагружению подвергаются различные части летательных аппаратов, стрелы подъемных кранов, детали мостов и машин. Все волны, рассмотренные нами ранее, повышали концентрацию напряжений в вершине трещины. Иное дело из-гибные. Они способны понижать напряжения в устье и таким образом тормозить трещины. Вместе с тем, подобно поперечным упругим колебаниям, изгибные волны отклоняют разрушение от первоначальной траектории и разворачивают трещину.

На практике очень часто волновые явления обладают достаточно высокой интенсивностью и способны ощутимо влиять на зарождение и распространение трещины. Так, разрушение авиационных конструкций хвостовых частей самолета часто наступает под действием мощных шумовых и звуковых потоков, возбуждаемых двигателями.

М. Булгаков в романе «Мастер и Маргарита» описывает следующую фантастическую картину: «- Мессир, поверьте, – отозвался Коровьев и приложив руку к сердцу, – пошутить, исключительно пошутить… – Тут он вдруг вытянулся вверх, как будто был резиновый, из

пальцев руки устроил какую-то хитрую фигуру, завился, как винт, и затем, внезапно раскрутившись, свистнул. Этого свиста Маргарита не услыхала, но она его увидела в то время, когда ее вместе с горячим конем бросило саженей на десять в сторону. Рядом с нею с корнем вырвало дубовое дерево, и земля покрылась трещинами до самой реки».

Диапазон упругих частот, генерируемых в конструкциях современного реактивного самолета, простирается от инфразвуковых (измеряемых считанными герцами) до ультразвуковых (исчисляемых миллионами герц). Последствия страшны: выходит из строя обшивка руля высоты, что является прямым следствием шумов, создаваемых струей ракетного ускорителя. В американской печати отмечалось, что длительное время в ракете «Титан», построенной в США, появлялись подобные разрушения, также связанные с мощными шумами.

Для англо-французского сверхзвукового самолета типа «Конкорд» максимум звуковой интенсивности приходится на диапазон 100-1000 Гц. При этом в хвостовой части фюзеляжа преобладает участок спектра 100- 250 Гц. Интересно, что при испытании самолетных конструкций применяют громкоговорители большой мощности со специальными рупорами; на «подопытные» объекты воздействуют звуком тысячи и тысячи часов – до полного разрушения металла. При этом используют то обстоятельство, что трещина реагирует на множество колебаний различных частот и особенно на резонансную частоту, зависящую не только от особенностей самой конструкции, но и от длины трещины. Оказалось, что эти резонансные частоты и находились в области особой чувствительности 100-250 Гц.

Все эти примеры интересны не потому, что шумы способны разрушить даже металл. Как раз наоборот, мы стремимся выяснить, как использовать упругие волны различной природы для сознательного управления траекторией быстрой трещины. Как с их помощью затормозить разрушение? Годны ли для этого стационарные, упругие волны? К сожалению, на практике их не используешь. И вот почему. Представьте, что перед нами какая-нибудь металлическая конструкция. Ее покой чутко охраняют своеобразные сторожа – акустические, электромагнитные или другие приборы. Но вот внезапно в каком-то ее месте возникла трещина. Она немедленно

подает голос и датчики «службы безопасности» ее засекают. Привлекая небольшие вычислительные устройства, они определяют не только местонахождение трещины, но и направление, и скорость движения. Затем подают импульс – «сигнал бедствия». По этому сигналу должны сработать миниатюрные взрывные устройства и послать упругие волны на устье трещины. Большим ли запасом времени располагают эти устройства? Да его почти что и нет. Всего-навсего 1-5 мкс. За это мгновенье много периодов волн не пошлешь. Значит, это должен быть упругий импульс, а не периодическая волна. Он обрушивается на трещину в заданном месте под определенным углом.

Что же происходит при этом с трещиной? У нее должно остаться лишь две «возможности»: либо остановиться, либо изменить траекторию в том направлении, которое нужно нам. Конечно, хорошо прервать разрушение. Ведь это означает исключение катастрофы, бесценный выигрыш времени для ремонта и восстановления несущих свойств конструкции. Но разве остановленная трещина не начнет расти вновь? Может и начать, но ей надо разогнаться, а для этого получить немалую порцию энергии извне. Желательно, чтобы концентрация напряжений в вершине остановленной трещины была уменьшена до предела. Этому помогает следующее. Когда заряд тринитротолуола взрывается, он выбивает в материале небольшое отверстие, порядка нескольких миллиметров. Напряжения, создаваемые вокруг него, таковы, что проходящая мимо трещина в результате атаки ударных волн заворачивает на очаг взрыва и останавливается на нем. Это очень удобно, потому что теперь радиус при вершине трещины огромен и расти при напряжениях, существующих в детали, она больше не сможет.

Другой вариант в этом отношении, пожалуй, лучше. Допустим случилось так, что волны развернули трещину в обратном направлении или «завили» ее в окружность или спираль. Такое разрушение не сможет прогрессировать потому, что напряжения в его вершине будут определяться кривизной его траектории, а не остротой вершины трещины. Образец с такой трещиной окажется не менее прочным, чем совершенно целый. Он может успешно послужить еще некоторое время.

Что же происходит с металлом, когда на нем взрыва-

ется заряд тринитротолуола или другого взрывчатою вещества? Конечно, возникающие при этом упругие волны остановят трещину, однако, они неизбежно повредят конструкцию, внесут в нее новые отверстия, зародышевые микротрещины и многие другие дефекты. И все же другого пути нет, ведь вся конструкция находилась в состоянии агонии. Не останови мы трещину, разрушение было бы неизбежным.

Быть может прав был испанский поэт Луис де Гонгора и Арготе: «…и только адом побеждают ад».