"Ванна Архимеда: Краткая мифология науки" - читать интересную книгу автора (Ортоли Свен, Витковски Никола)

Золотое сечение Матилы Гика

Есть люди, ненавидящие четверку, а есть такие, кто обожает девятку. Находясь в плену суеверий, они подсчитывают сумму цифр грядущего года, чтобы узнать, насколько он будет хорош. А еще есть гении арифметики, связанные с числами самыми интимными отношениями, вроде одаренного математика Рамануджана, к которому однажды пришел приятель и заявил:

— Я только что ехал на такси с номером 1729. По-моему, это неплохой знак.

— Совсем неплохой, — немедленно откликнулся Рамануджан. — Это наименьшее из чисел, которые можно двумя разными способами представить в виде суммы двух кубов.

Но всех смертных, не слишком увлеченных ни арифметикой, ни нумерологией, объединяет подсознательная уверенность, что цифры обладают оккультной силой. О том свидетельствует литературный успех золотого сечения, десятки теорий по поводу которого дали жизнь тысячам исписанных страниц. Это число, окрещенное #966;, — не просто единственная реальная математическая диковинка, но диковинка, известная, по-видимому, испокон веков, так как его можно обнаружить в пропорциях готических соборов, фасадов древнегреческих храмов, в сердце великих пирамид. Нашептывают даже, что оно сохранялось в веках, изустно передаваемое пифагорейцами инициатам как универсальная и неизменная тайна. Мраморные изваяния Праксителя, как и картины Сера, задумывались в соответствии с правилами «божественной пропорции».

Само это выражение датируется 1509 годом, когда был опубликован монументальный труд «О божественной пропорции» (De divina proportione), иллюстрированный Леонардо да Винчи, в котором итальянский математик Лука Пачоли заинтересовался любопытным отношением, определенным еще Евклидом: «Отрезок делится в крайнем и среднем отношении, если его большая часть такова же в отношении к целому, какова меньшая часть в отношении большей». Попросту говоря, когда отрезок разделен на две части, большую и маленькую, то пропорция будет «божественной», или «золотой», если отношение большой и маленькой равно отношению всего отрезка и его большей части. Не надо быть знатоком геометрии, чтобы вычислить величину отношения: (1 + sqrt[34]5)/2, или 1,618034...

У этого числа много любопытных свойств: если от него отнять единицу, то получится обратное к нему — 0,618034...; возведение его в квадрат даст число, большее на единицу, — 2,618034... Кроме того, #966; дают выражения sqrt(1+sqrt(1+sqrt(1+sqrt(1+...)))) и 1+1/(1+1/(1+1/1+...)).

Все это граничит с высшей математической красотой, но явно недостаточно для понимания успеха золотой пропорции. Посвященные ей сочинения — это вовсе не книги по математике, а скорее мистические и эзотерические писания, представляющие #966; чудом сохранившейся частью великого Знания древних инициатов и показывающие на чертежах, как фасад Пантеона вписывается в «золотой треугольник» (со сторонами в отношении 1:1,618). Самое знаменитое среди них — сочинение «Золотая пропорция» (Le Nombre d'or, 1931), в котором странный румынский адвокат, инженер и дипломат Матила Гика заявляет, что он открыл «законы Числа, управляющие одновременно гармонией Вселенной и красоты». С чарующим лиризмом его проза смешивает искусство, математику и метафизику с целью доказать, что пропорция золотого сечения дает ключ к пониманию красоты и жизни (достаточно, например, посмотреть на раковину наутилуса, скрученную в логарифмическую спираль, и обнаружить в ней число #966;).

Гика цитирует разнообразные источники — Пачоли, Евклида, Пифагора, — но в действительности он обходится исследованиями намного более поздними и исключительно немецкими: философа Адольфа Цейзинга, утверждавшего в 1870 году, что красота — это пропорция (разумеется, золотая), поскольку «прекрасное — это гармония, объединяющая единое с разнообразием»; физика Густава Фешнера, апостола экспериментальной эстетики, показавшего, что для подавляющего большинства людей прямоугольник со сторонами, находящимися в золотой пропорции, красивее любого другого прямоугольника; наконец, отца Дезидериуса Ленца, монаха-бенедиктинца, до безумия увлеченного геометрией и преподававшего религиозное искусство на основании, как нетрудно догадаться, представления о золотой пропорции. Между ними и Лукой Пачоли или древними греками — ничего. Ничего, кроме буйной фантазии самого Матилы Гика, заветной мечтой которого было, без сомнения, подвести под превосходство Запада, его мистики и эстетики, некий бесспорный фундамент. «Именно геометрия, — утверждал он, — дала белой расе техническое и политическое превосходство».

Берегитесь пропорций, особенно золотых! Такой лозунг никогда бы не пришел в голову математику, но именно он руководил кропотливыми исследованиями историка искусства Маргариты Неве, собравшей все детали истории, рассказанной здесь. Убежденная, что искусство — это прежде всего опровержение законов и теорий, будь им хоть 2000 лет, она постаралась проверить, действительно ли современные художники, и в особенности Синьяк, Сера, Серюзье и Мане, создавали свои картины, опираясь на золотое сечение. Разбирая тексты и письма, анализируя фотографии картин в ультрафиолетовых лучах и предварительные наброски, она пришла к заключению, стоящему дороже золота: все эти художники делили свои холсты на восемь частей — задача, посильная для восьмилетнего ребенка. Отношение 4/8 (половина) давало им идеальную симметрию; 6/8 (три четверти) почти не имело эстетической ценности; зато 5/8, отношение отнюдь не тривиальное, оказалось лежащим в основе многих композиций. Но 5/8 равно 0,625 и отличается от числа #966; менее чем на 7 тысячных... то есть на толщину кисти. Одного мазка художника хватило, чтобы Матила Гика погрузился в золотые грезы, отец Ленц взялся за циркуль и линейку, а золотое сечение пополнило ряды математических чудес.

Хотя членение в крайнем и среднем отношении совсем и не чудесно, понятно, почему оно стало причиной страстей. Отношение малых, равное отношению великих, подобие деления себе самому, микрокосм в макрокосме — все это давало почувствовать связь с мистическими корнями при малейших намеках на древнегреческие или средневековые аналогии. В конце концов, человеческий мозг должен каким-то образом сообщаться с космосом, законченной частью которого он является; вибрация нейронов при созерцании золотой пропорции с ходу приводит его в контакт с высшими сферами математики — языком богов, в силу ее чистоты и недоступности. Золотая пропорция, эта модель арифметической нирваны в миниатюре, составляет, таким образом, привилегированный путь к общению с потусторонним и неопровержимое доказательство Божественной природы человека. Чтобы добраться до рая, как, наверное, посоветовал бы Рамануджан, возьмите такси с номером 1,618034...

Адепты золотого сечения сейчас не так многочисленны, как в 1930-е годы, но на смену готовится новое математическое чудо. Речь идет о фракталах, «автоподобных» формах, порождаемых компьютерами с помощью простых формул. Эти головокружительные зигзаги над бездной повторяют один и тот же мотив в разнообразных масштабах: наималейшая их часть подобна целому. Увлечение этими удивительными картинами стало настоящей модой (появились даже фрактальные майки и зонтики) и порой граничит с золотушным бредом, отождествляя свои формы с «отпечатком Бога». Божественный фрактал скоро сможет заменить золотую пропорцию. Будем с нетерпением ожидать нового Гика, в киберпанковом варианте, который докажет, что австралопитеки (обладавшие поразительными способностями к математике) рисовали на песке, покрывавшем каменный пол их жилищ, древообразные фракталы.