"Загадка булатного узора" - читать интересную книгу автора (Гуревич Юрий Григорьевич)

Булатные узоры

Для получения булатного слитка нужны были опыт и терпение; но еще больше времени и сил требовалось для того, чтобы правильно его проковать и получить изделия высокого качества. Если ограничиться лишь тем, что из куска стали вырезать клинок, то свойства его будут чрезвычайно низкими. Если же проковать вутц на полосу путем его деформации только в одном направлении, то ферритные включения вытянутся и на изделии получится полосчатый прямолинейный узор, характерный для низших сортов булата. В этом случае мягкие ферритные полоски могут оказаться на лезвии клинка и он потеряет свои режущие свойства.

Встречались ли в древности с таким явлением? Да, встречались! Вот что об этом пишет Аль-Бируни: «К мечам, известным под названием ал-кубурийские, относятся как будто те, которые находят в могилах знатных покойников. И слышал я, что если мечи (изготовлены) из металла, который при плавке получил неодинаковое (количество) примесей («зелья»), то на них остаются тонкие нежные канальца (жилки), не впитывающие воду (углерод). Если они попадаются на лезвиях, то (мечи) не способны резать из-за отсутствия твердости. И если их стесать с лезвия, то вреда нет». Недаром турецкие и египетские клинки с «полосатым» узором даже в древности считались булатами самого низкого качества.

А как же следует проковать вутц, чтобы получить из него клинок с высокими свойствами? Люди давно заметили, что дерево вдоль волокон колется легко, а поперек — с трудом. Значит, надо проковать слиток так, чтобы волокна структуры булата «обтекали» контуры изделия. Если это клинок, то волокна должны быть направлены вдоль лезвия. Но и расположение волокон в виде прямых линий не обеспечивает высоких свойств, поэтому необходимо ориентировать волокна в разных направлениях, «перепутать» их, тогда высокие свойства обеспечены.

Сегодня металлурги хорошо знают, что чем больше «сплетать» волокно при ковке, тем более стойкие и прочные изделия можно получить. Достигается это многократной ковкой в разных направлениях, а контролируется современными методами металлографического анализа. В древние же времена только появление на поверхности клинка коленчатого или сетчатого узора указывало мастеру на совершенство приемов ковки. Постичь их было не легко. Опыт и умение приобретались годами, передавались из рода в род и хранились в глубокой тайне.

Из глубины столетий до нас дошел единственный способ ковки, которым в древности получали йеменские мечи с волокнистыми узорами, называемые «фарандом» или «мухаввас» (ткань с переливчатым оттенком). Вутц ковали не в длину, а начиная с одного конца, пока не расплющивали на блюдо. Блюдо разрезали по спирали, и полученные округлые полосы выравнивали. Из них ив" вали мечи.

Возможно, что П. П. Аносов скрывал способы проковки своих клинков. Во всяком случае в работе «О булатах» много внимания уделяется режимам нагрева стали перед горячей деформацией, а ковка описывается предельно кратко: слиток рассекают зубилами на три части, разрубленные части «проковывают в правильные бруски, а потом в полосы». И это все.

П. П. Аносов, безусловно, знал работы Бреана в Мериме, опубликованные в первой четверти XIX века, в которых своеобразие булатных узоров объяснялось только приемами ковки. «Я на опыте убедился, — сообщая Бреан в 1823 году, что волнистые жилки, которые кузнецы называют коленами, являются результатами приема ковки. Если ограничиваться вытяжкой в длину, то жилки будут продольные, если же тянуть одинаково не всех направлениях, то рисунок имеет кристаллический вид; если же видоизменить вытяжку в двух направлениях, то получатся переходы, как в восточных булатах. Не нужно долгих опытов, чтобы достигнуть получения какого угодно узора».

Последнее утверждение неверно, и Мериме в более поздней работе совершенно правильно уточняет: «Что касается причудливости узора, то он является результатом работы молота при вытяжке, требующей много времени и искусства, чем и объясняется высокая цена клинков».

О своем искусстве получения различных видов булатных узоров П. П. Аносов не рассказывает…

В более поздних исследованиях неоднократно подчеркивалось, что получение булатов с коленчатыми и сетчатыми узорами связано с применением сложных, не известных нам приемов ковки. Так, например, Г. А. Кащенко в 30-х годах нашего столетия писал: «Внешним признаком булатной стали является красивый, видимый простым глазом узор. Этот узор представляет собой макроструктуру стали, называемую коленчатой или булатной. Она получалась, по-видимому, путем энергичной и многосторонней ковки, проводимой в особых условиях. При этом металл претерпевал глубокое обжатие в разных направлениях, в силу чего в металле уничтожается слабость, связанная с односторонней волокнистостью… Попытки воспроизвести булатную сталь, делавшиеся еще 100 лет назад и в более позднее время, приводили к успеху, хотя и неполному, так что процесс ковки булата является до сих пор не вполне выясненным…»

Интересно, что на нерешенность этого вопроса даже в 1978 году указывал немецкий металлург М. Захсе.

Между тем советскому металлургу Р. А. Лиждвою удалось раскрыть механизм одного из способов формирования булатного узора. Он изобрел и разработал приемы кузнечной вытяжки с направлением подачи слитка (заготовки) под острым или прямым углом к фронту бойков молота. Этот способ, известный под названием «косая ковка», позволяет сочетать вытяжку металла в двух направлениях с его протяжкой вдоль оси заготовки. Р. А. Лиждвой экспериментально показал, что при протяжке металла вначале под прямым, а затем под острым углом к фронту бойков или с произвольным изменением угла подачи заготовки в пределах 45–90° формируется текстура, соответствующая узору волнистого булата.

Старший реставратор Владимиро-Суздальского музея-заповедника В. И. Басов выплавил тигельным способом высокоуглеродистую сталь с содержанием углерода 1,3–1,9 %. В результате замедленной кристаллизации слитка этой стали была получена высокая степень дендритной ликвации углерода. Проковкой стали путем нанесения крестообразных ударов под углом 45° к оси проковываемой заготовки был получен клинок с узором, очень похожим на сетчатый булат. Правда, в связи с тем что резкой физической неоднородностью сталь, по-видимому, не обладала, узор на клинке проявился не совсем четко.

Макроструктура полученных нами булатных слитков (см. фото 5, 6) гарантировала хорошее проявление узора после ковки. Для получения различных узоров (фото 7) мы использовали круглые бойки и фасонные штампы, а также оригинальный метод горячей деформации, о котором будет рассказано позже.

Применяли ли древние кузнецы фасонные штампы? Да, применяли. Археологические находки свидетельствуют, что при изготовлении сложных поковок в IX—Х веках должны были обязательно участвовать два инструмента: фигурные подкладки и фасонные штампы.

Наши исследования показали, что наиболее удобными для ковки являются круглые слитки диаметром 100–140 мм и длиной 150–240 мм. Перед деформацией их поверхность счищалась абразивами. Если после удаления верхней корки на поверхности слитка обнаруживали дефекты, они также удалялись. Перед ковкой для повышения пластичности металла при деформации слитки отжигали. Нагрев слитков под ковку осуществлял ли очень медленно. Так же, как это делал П. П. Аносов, слитки сажали в камерную печь при температуре 200 °C и в течение 2–3 часов нагревали до 600 °C. Последующий прогрев слитков с 600 до 900–1080 °C осуществляли в течение 2 часов. Промежуточный нагрев металла во время ковки производили так, чтобы слитки в продолжение 20–30 минут нагревались до необходимой температуры.

Ковку нагретых слитков производили легкими ударами на молоте 750 кг. Слиток первый раз проковывали на полосу сечением 50Х50 или круг диаметром 50–60 мм. После расковки подприбыльную часть, длиной до 1/3 длины полученной штанги, удаляли. После вторичного нагрева штангу проковывали на полосу сечением 70Х20 или круг диаметром — 20 мм.

С целью более четкого выявления макроструктуры поковки отжигали по следующему режиму: медленный нагрев до 780–800 °C, выдержка при этой температуре 5–6 часов, охлаждение в печи до 600 °C и последующее охлаждение на воздухе.

В первых экспериментах мы обычными методами ковки вытягивали слиток в полосу. На поковках после шлифовки и травления поверхности слабым раствором соляной кислоты появлялся полосатый узор, характерный для низших сортов булата. На фото 8 показан нож, сделанный из нашего булата типа шам. Светлые полосы на темном фоне — участки малоуглеродистой стали (железа) в объеме высокоуглеродистой основы. Рисунок на этом ноже очень напоминает узор на аносовском кинжале (см. фото 3).

Поскольку светлые полосы обычно вытягивались по волокну вдоль лезвия клинка, на лезвие древние мастера старались выводить высокоуглеродистый участок металла. Такое лезвие после закалки на мартенсит приобретало значительную твердость, но самозатачивающим свойством не обладало. Возможно, что прожилки железа в таком булате обеспечивали клинку только повышенную вязкость.

Для превращения полосатого рисунка в волнистый мы обжимали ребра заготовки круглым прутком, после чего края вырезали. Коленчатый узор получали путем горячего скручивания заготовки и последующего ее обжатия.

По предложению Ю. И. Люндовского, часть заготовок перед горячей деформацией подвергали местному нагреву токами высокой частоты. Пруток диаметром 15–20 мм устанавливали в одновитковый кольцевой индуктор диаметром до 50 мм. Концы бруска фиксировали в зажимах. На расстоянии 20 мм от конца заготовку нагревали токами высокой частоты. Нагреву подвергался участок шириной 15–20 мм. После достижения температуры 1000–1050 °C пруток скручивали в направлении по часовой стрелке на угол 90°. Затем заготовку перемещали вдоль ее оси на 20 мм, нагревали соседний участок и скручивали в направлении против часовой стрелки на такой же угол. Таким же образом производили нагрев и деформацию скручиванием во взаимно противоположных направлениях отдельных участков всей заготовки. После этого заготовку либо обжимали фасонными штампами, либо просто проковывали на толщину 5–8 мм и вырезали пластины, из которых изготовляли клинки и другие изделия.

Клинок, изготовленный этим способом, имел ярко выраженный узор с гроздевидными фигурами, принимающий форму мотков и прядей, выступающих прозрачной сеткой на более темном фоне рисунка. Это был узор типичного кара-табана (черный блестящий) — лучшего индийского булата.

Усвоив найденные приемы ковки булатных слитков и добившись многократной повторяемости булатных узоров на основе ферритных прослоек, мы приступили к изучению узоров, получающихся на булатах с углеродистыми прослойками. Узор на таких булатах выявлялся более глубоким травлением, получался более выпуклым и тонким, но менее выразительным, так как цвет углеродистых прожилок не сильно отличался от цвета высокоуглеродистой матрицы. Кроме того, эти булаты обладали значительно худшей пластичностью, их было тяжелее деформировать, и это затрудняло получение сетчатых и коленчатых узоров.

Волнистый рисунок на клинках, приготовленных П. Н. Швецовым, очень похож на полученный нами рисунок булата с углеродистыми прослойками (фото 9). Аналогичные рисунки нами были получены на топорике и кортиках (фото 10, 11). Металлографическим анализом было подтверждено и сходство их микроструктур. Таким образом, скорее всего П. Н. Швецов высших сортов булата типа табан и хорасан получать не умел.

Сохранились сведения, что П. Н. Швецов при приготовлении булатов «железо предпочитал в виде гвоздей, листов, но при непременном условии — без ржавчины». Это дает основание предполагать, что при приготовлении булатов он пользовался приемами, описанными П. П. Аносовым. Однако температура в печи Сименса, куда ставились тигли во времена П. Н. Швецова, была достаточно высокой, и поэтому кусочки железа могли почти полностью расплавляться и науглероживаться. Все же в этих условиях, по-видимому, можно было добиться некоторой неоднородности стали по углероду; но слитков с включениями из железа (феррита), изготовить уже было невозможно. С другой стороны, если мастер не вынимал тигель со сталью из печи вовремя, у него выходила обычная углеродистая сталь. Вот почему булат у П. Н. Швецова получался не всегда.

В свете вышеизложенного легко объяснить замечание П. П. Аносова о том, что «твердый булат переходит от перегревки прямо в чугун, а мягкий в сталь». Перегрев булатов перед ковкой обеспечивает высокую скорость диффузии углерода, которая может полностью устранить неоднородность булата и «стереть» его узоры.

Когда П. П. Аносов изготовлял булат, он мог исследовать только узор на его поверхности, что современная наука квалифицирует как макроструктуру стали. Как уже отмечалось, более объективными характеристиками свойств стали является ее микроструктура, которая определяет фазовый состав сплава. Н. Т. Беляев изучал микроструктуру закаленного и отпущенного булата. Им приведена единственная в литературе микрофотография структуры аносовского булата, увеличенной в 50 раз. На фоне троостита Н. Т. Беляев наблюдал крупинки структурно-свободного цементита. В связи с этим изучение микроструктуры и фазового состава полученных нами булатов представляло огромный интерес.

На фото 12, а приведена микроструктура отожженного при 850–860 °C булатного клинка. В центре видна зона мягкого и пластичного феррита (содержание углерода 0,03 %), окруженная пластинчатым перлитом (содержание углерода 1,2–1,5 %). По границам зерен перлита наблюдается карбидная сетка.

Неоднородность макроструктуры булатного слитка после периодических нагревов и деформации приводит к резко выраженной микронеоднородности сплава. Это вызвано тем, что в результате ковки дробятся и тесно переплетаются слои металла с различным содержанием углерода, который при нагревах диффундирует из слоя в слой. В результате этого малоуглеродистые зоны металла все более и более насыщаются углеродом.

На фото 12, б видны три совершенно различные зоны в стали. Левая зона соответствует заэвтектоидной стали с содержанием углерода 1,5 %. Она состоит из перлита и сравнительно крупных скоплений сфероидальных карбидов (цементита), выделившихся при медленном охлаждении стали. За ней расположена зона чистого феррита. Третья зона характеризуется пластинчатым перлитом со значительно меньшим выделением, цементита. Сплав этой зоны содержит примерно 1,2 % углерода. Таким образом, замеченные Н. Т. Беляевым выделения структурно-свободного цементита наблюдались и в нашем булате.

Выделение цементита на границе феррита и заэвтектоидной стали объясняется, по-видимому, диффузионным взаимодействием включений железа с высокоуглеродистой матрицей в процессе охлаждения слитка и последующего нагрева стали для пластической деформации. Поэтому наиболее крупные карбиды скапливаются в виде сегрегатов на границе с ферритной зоной. Средний размер карбидов 4–5 микрон, занимаемая ими площадь на шлифе — до 45 %. На границе с ферритом часто наблюдались монолитные карбидные участки (фото 12, в). Такая структура стали должна обеспечивать необыкновенно высокие режущие свойства булата.

Неоднородность по углероду вызывала появление в булате самых разнообразных структур. Так, например, зоны пластинчатого перлита с выделениями карбидов чередовались не только с ферритными, но и с феррито-перлитными, характерными для доэвтсктондных сталей с содержанием 0,25–045 % углерода (фото 12, г).

Булаты с ферритными и углеродистыми прослойками отличались по микронеоднородности только тем, что в последних металл всех зон был более насыщен углеродом и включений феррита было очень мало. Включения цементита в таких булатах выделялись на границе с менее насыщенной углеродом зоной стали.

Таким образом, микроструктура отожженного булата подтверждает ярко выраженную неоднородность его по углероду, которая сопровождается чередованием практически всех возможных структур, характерных для сплавов с углеродом от 0,03 до 1,5 %. Наряду с этим характерной особенностью булата является выделение крупных зерен цементита, группирующихся часто в конгломераты. Особенно важно, что частицы карбидов, как правило, выделяются на границах с мягкими и пластичными структурными составляющими.

Интересно, что аналогичные особенности микроструктуры доаносовских булатов описывает современный исследователь И. С. Гаев. Обнаружив неоднородность распределения цементита в закаленной стали, он показал, что крупнозернистость и неравномерное распределение цементита сохраняются и после отжига при 900 °C. В микроструктуре отожженной стали он наблюдал, так же как и мы, «круглые зерна эвтектического и вторичного цементита, а также цементита пластинчатого перлита, образованного в процессе отжига». При нагреве и ковке часть зерен цементита дробится и растворяется в аустените, а затем снова укрупняется путем выделения и коалесценции. Крупные зерна могут сохраняться при нагреве. И. С. Гаев получил зерна цементита почти такой же величины, как в булате, в образцах стали, изготовленных спеканием смеси порошков чистого железа и сажистого углерода. Этот эксперимент подтверждает наши предположения о том, что на границе железа и высокоуглеродистого сплава создаются благоприятные условия для образования крупных зерен цементита.

Современные исследователи булатной стали И. С. Гаев и И. Н. Богачев считали, что большую неоднородность в распределении углерода можно достичь длительной выдержкой полужидкого металла, не доводя его до расплавления. Другими словами, они поддерживали теорию Д. К. Чернова и Н. Т. Беляева о том, что природа булатного узора связана только с дендритной неоднородностью стали по углероду. На основании приведенных выше сведений можно заключить, что ликвация углерода при кристаллизации булатного слитка — действительно важный фактор, хотя она и не является первопричиной образования узора. Медленное охлаждение двухфазного сплава, с одной стороны, помогает достичь его наибольшей неоднородности, с другой — обеспечивает диффузию углерода из жидких или полужидких масс высокоуглеродистой стали в частицы малоуглеродистого железа. Эти явления приводят к «диффузионной сварке» частиц сплава с различным содержанием углерода и в результате к получению монолитного слитка булата.

Если выплавленную булатную сталь охлаждать быстро, то диффузия углерода происходит значительно в меньшей степени, и благодаря различным коэффициентам объемного сжатия при охлаждении высокоуглеродистой и малоуглеродистой стали возникают сильные напряжения, которые могут привести к трещинам. Поэтому быстро охлажденные слитки при ковке разваливались, и из них не удавалось изготовить какое-либо изделие. Правда, если включений феррита много и они достаточно крупные, то, будучи пластичными, они при ковке могут легко деформироваться и под давлением окружающего металла заваривать разрывы и микротрещины, образующиеся в хрупких высокоуглеродистых зонах.

Из приготовленного нами булата были выкованы клинки разных форм и сечений. Наступило время решать вопрос о режимах их термической обработки — закалке и отпуске.

П. П. Аносов закаливал булаты в зависимости от назначения в сале или воде, причем самые твердые из них — преимущественно в сале, предварительно нагретом почти до температуры кипения. Применение сала, а в наше время — масла в качестве охлаждающей среды при закалке значительно уменьшает возникновение в стали закалочных дефектов, так как эта среда обеспечивает сравнительно небольшую скорость охлаждения в момент превращения аустенита в мартенсит.

Известно, что многие металлурги придавали большое значение режимам закалки булата и даже относили их к основным секретам приготовления булатного оружия.

В дальнейшем читатель убедится, что для такого мнения есть веские основания. В то же время полученная нами слоистая структура булата в отожженном состоянии не давала никаких оснований опасаться того, что булатный узор будет разрушен в результате последующей закалки при любых выбранных режимах нагрева и охлаждения.

Зная микроструктуру отожженной стали и ее химический состав, подобрать оптимальную температуру нагрева под закалку и необходимые скорости охлаждения при современном состоянии науки не так уж трудно. Очевидно, свойства булата будут тем выше, чем тверже и прочнее металл в зонах железоуглеродистого сплава заэвтектоидного состава. Что касается участков железа или малоуглеродистой стали, то они при нагревах и охлаждении под закалку должны сохранять ферритную структуру и обеспечивать пластичность и вязкость булата.

Наибольшую твердость после закалки может обеспечить только мартенситная структура с крупными включениями цементита. Поскольку такие включения карбидов железа уже получены в стали после отжига, следует осуществлять нагрев под закалку до таких температур, чтобы они не растворялись полностью в аустените. С этих позиций нагрев стали надо было бы осуществлять до температур порядка 740–750 °C (см. рис. 2). При достаточной выдержке при таких температурах перлит полностью превратится в аустенит, а карбиды раствориться в аустените не успеют.

Однако предварительными экспериментами было установлено, что нагрев до температур 740–750 °C и последующее быстрое охлаждение булата в масле приводят к образованию смешанной троостито-мартенситной структуры, которая максимальную твердость стали обеспечить не может. Выпадение троостита в данном случае объясняется тем, что имеющиеся карбиды являются готовыми центрами кристаллизации для перлита (троостита) и облегчают его образование даже при высоких скоростях охлаждения стали.

Чтобы увеличить скорость охлаждения, необходимо было поднять температуру нагрева стали. После закалки от температур 850–870 °C сталь имела мартенситную структуру, но появились участки остаточного аустенита и наблюдалось значительное измельчение карбидов. Такая структура также не могла обеспечить необходимую твердость и износостойкость.

Оказалось, что только закалкой от узкого интервала температур 810–830 °C можно получить требуемые структуры и свойства булата.

На фото 13, а показана микроструктура закаленного булата с ферритными прослойками. Слева видна ферритная зона, справа — зона мелкоигольчатого мартенсита с включениями крупных и мелких карбидов, которые группируются у границы структурных зон. Микротвердость мартенситной зоны в 5 раз выше ферритной. Чередование мягких и пластичных ферритных зон с твердыми мартенситными прослойками наблюдается в объеме всего металла (фото 13, б). Примечательно, что и в ферритной зоне встречались крупные включения мартенсита (фото 13, в). Чередование феррито-мартенситных зон с мартенситными показано на фото 13, г. В мартенситных зонах наблюдались мелкие зерна остаточного аустенита.

Аналогичные структуры были выявлены после закалки булата с углеродистыми прослойками. Интересно, что микроструктура этого булата после нормализации от 810 °C и образца кованого булата П. Н. Швецова были очень похожи. В этом мы находим подтверждение того, что П. Н. Швецов умел готовить булат только с углеродистыми прослойками.

После детального изучения свойств закаленного булата сделанные образцы холодного оружия и инструмента было решено подвергнуть следующей термообработке: закалке от 810–830° в воде и масле и низкому отпуску при 180–230 °C. Готовые изделия были отполированы, протравлены уксусной кислотой и промыты дистиллированной водой. Часть изделий хромировалась и никелировалась, при этом узор полностью сохранялся.

В отделе оружия Государственного исторического музея хранится авторское свидетельство на изобретение за № 116334 от 18 февраля 1955 года «Способ изготовления слитков булатной стали», а рядом на стенде — кортик и полированные плитки с причудливыми узорами. Все это создано златоустовскими металлургами И. Н. Голиковым, П. В. Васильевым, Ю. Г. Гуревичем, Н. Ф. Лонгиновым и Ю. И. Люндовским.

На мечах, шпажных клинках, кортиках, топорах и ножах разных форм хорошо просматривались узоры всех сортов булата (См. фото 8, 9, 10, 11, 14). Часть этих изделий экспонировалась на Всесоюзной выставке достижений народного хозяйства СССР в 1956 году. В Златоустовском городском музее демонстрируется также кубок из булатной стали, изготовленный в честь 200-летия города Златоуста.

Клинки из нашего булата рубили гвозди и обладали высокими режущими свойствами. Несмотря на большую твердость, они обладали достаточно высокой вязкостью: при ударах значительной силы поломать их не удавалось. Булатные ножи для рубанка работали без заточки в несколько раз дольше, чем ножи из обычной углеродистой стали.

К сожалению, легендарной упругости булатных клинков достичь не удалось. Хорошо известно, что высокую упругость можно обеспечить тщательной шлифовкой и тонкой полировкой изделий. Так, например, Д. К. Чернов показал, что если хорошо отполировать кристалл поваренной соли, то даже он приобретает упругость. Н. Т. Беляев подчеркивал, что «полировка изделий доводилась П. П. Аносовым до такого совершенства, что готовые изделия, в сущности, являлись шлифами». Условиями для подобной отделки образцов булата мы не располагали.

А вот «харалужные» (цветастые) булаты мы приготовляли успешно. Для этого обычный булат с ферритными или углеродистыми прослойками оксидировался в обычной нагревательной печи при температуре 200–400 °C. В связи с тем что цвет стали при нагревании на воздухе изменяется в зависимости от содержания в ней углерода, нам удавалось получать на фоне золотистой матрицы красивые сиреневые узоры.

В июле 1961 года в Златоусте вновь собрались металлурги со всей страны. Здесь состоялось Всесоюзное совещание прокатчиков. Участникам совещания в качестве сувениров были подарены пластины из узорчатой стали…