"Большие биологические часы (введение в интегральную медицину)" - читать интересную книгу автора (Дильман В.М.)

стабильность внутренней среды организма.
Для того чтобы рассмотреть, как все это делается, необходимо напомнить
тот кибернетический принцип, на котором основано обеспечение стабильности в
системе, будь то простой термостат или сложная система живого организма.
Стабильность в любой системе поддерживается благодаря механизму
отрицательной обратной связи. Рассмотрим, как функционирует этот механизм.
Представим себе условно эндокринную железу А, которая выделяет в кровь свой
специфический гормон a1 (рис. 2). Этот гормон оказывает действие на
чувствительные к нему клетки в соответствующих тканях (тканях-мишенях) и
поэтому может быть обозначен как рабочий гормон. Представим ситуацию, в
которой расход рабочего гормона увеличился и в результате снизилось его
содержание в крови. Для восстановления постоянства внутренней среды должна
усилиться деятельность железы А. Что же при этом происходит?
Железа А не существует в организме обособленно, она находится в
определенной системе взаимоотношений под контролем своего регулятора --
назовем его железой Б. Снижение концентрации рабочего гормона a1
воспринимает именно эта железа-регулятор. В норме, когда содержание рабочего
гормона в крови постоянно, железа Б спокойна: рецепторы-антенны ее клеток до
необходимой степени насыщены гормоном А1. Теперь же, когда концентрация
гормона a1 снизилась, частично эти рецепт торы освобождаются от рабочего
гормона. Прекращается тормозящее воздействие рабочего гормона на выработку
железой Б регуляторного гормона, контролирующего деятельность железы А.
Поэтому железа Б посылает к железе А своего посланника - гормон Б1 который
стимулирует к деятельности железу А. Продукция гормона a1 увеличивается.
Когда концентрация рабочего гормона А1 возрастет до нормы, он заполняет
необходимое число свободных рецепторов-антенн на мембране клеток
регулирующей железы Б. Возникает сигнал о том, что пора перестать
стимулировать к работе железу А, так как постоянство внутренней среды (в
данном случае концентрация гормона a1 в крови) восстановлено. В результате
стимуляция рабочей железы регулятором уменьшается и устанавливается
равновесие. Когда вновь произойдет снижение уровня в крови рабочего гормона,
торможение железы-регулятора прекратится. Вновь увеличится концентрация
гормона-регулятора - вновь усилится деятельность рабочей железы. Так
поддерживается равновесие.
Описанное здесь взаимоотношение, при котором рабочий гормон тормозит
свой регулятор, представляет собой типичный пример механизма отрицательной
обратной связи. В этом кибернетическом понятии слово "отрицательный"
обозначает, что регулятор тормозится действием периферического фактора (или
сигнала), в данном случае рабочего гормона, тогда как снятие
"отрицательного", тормозящего влияния приводит к стимуляции периферического
звена системы - рабочей эндокринной железы. В этом и состоит внутренний
смысл, суть механизма отрицательной обратной связи.
Аналогичный принцип регулирования заложен в любой саморегулирующейся
системе, например даже в термостате. В нем имеется источник энергии, который
в этой системе аналогичен рабочей железе А. И подобно тому, как рабочая
железа вырабатывает свой рабочий гормон, этот источник выделяет теплоту.
Роль железы-регулятора выполняет здесь реле - контактный термометр. Когда
температура в шкафу термостата превысит заданную, то есть необходимую,
столбик ртути в реле, поднимаясь от нагревания, выключит источник энергии.
Таким образом, сработает механизм обратной связи. Напротив, как только