"Энергия будущего" - читать интересную книгу автора (Проценко А.Н.) Если летящий футбольный мяч ударится о стенку дома, он отскочит от нее
и с чуть меньшей скоростью полетит в каком-то другом направлении. Но если он ударится о другой такой же мяч, то может случиться так, что он совсем или почти совсем остановится, а тот, что находился в покое, полетит со скоростью, близкой к скорости налетевшего на него мяча. Значит, в первом сл\чае (при столкновении со стенкой) скорость футбольного мяча почти не изменилась, а во втором (столкнонии мяча с мячом) она стала близка к нулю. Конечно, и во втором случае футбольные мячи могли бы столкнуться так, что после удара полетели бы в разные стороны с какими-то скоростями, правда, меньшими, чем скорость налетевшего мяча, но для нас важен тот факт, что при соударении мяча с телом, масса которого оч"ень велика по сравнению с ним, скорость последнего почти не меняется. При столкновении же с телом массой, равной или близкой его массе, его скорость может изменяться весьма существенно. Приблизительно то же самое происходит и с нейтронами, рассеивающимися на различных ядрах. Если нейтрон пролетит сквозь свинец (как в первом опыте Э. Ферми), то, сталкиваясь с ядрами атомов свинца, которые в 200 раз тяжелее нейтрона, он отскакивает от них, как футбольный мяч от стенки дома, почти ее уменьшая своей скорости, а следовательно, и энергии. Значит, рассеяние нейтронов свинцом не приводит к существенному уменьшению их энергии. Но вот источник нейтронов был помещен в воду, и его нейтроны, прежде чем добраться до серебряного цилиндрика, должны были пройти через слой воды, в которой очень миого атомов водорода, то есть много протонов, почти равных по весу нейтронам. Соударяясь с ними, как футбольный мяч с другим Чем больше число раз нейтрон столкнется с ядрами водорода, тем меньше будет его скорость, а значит, и энергия. Конечно, совсем остановиться иейтрон не может. Ведь атомы вещества не находятся в покое. Они движутся, колеблются, сталкиваются, обусловливая этим движением температуру вещества. Вот и получается, что остановиться нейтрон ее может. Если он попытается это сделать, на него немедленно налетели бы беспорядочно движущиеся окружающие его ядра и заставили бы двигаться. Итак, минимальная скорость движения нейтрона определяется температурой вещества. При комнатной температуре эта скорость равна всего двум тысячам метров в секунду, и поэтому нейтроны, движущиеся с такой скоростью, называют тепловыми, или медленными, так как их скорость после столкновения с окружающими ядрами вещества замедляется в 10 тысяч раз. Скорость же нейтронов, вылетающих при делении, равна 20 тысячам километров в секунду. Поэтому их называют быстрыми. Теперь понятно, почему были разными результаты опытов, поставленных Э. Ферми при облучении серебряного цилиндрика. В одном случае на него падали быстрые нейтроны, в другом - медленные. Значит, площадь сечения ядра-мишени зависит от того, какова энергия нейтрона, налетающего на ядро. Ясно, что когда мы говорим о площади сечения ядра, то подразумеваем не геометрическую, а эффективную площадь ядра, попав в которую нейтрон провзаимодействует с ядром, то есть поглотится, рассеется или вызовет деление. Есть такая игра: на дне небольшой коробочки сделано несколько лунок и там столько же шариков. Задача заключается в том, чтобы, покачивая |
|
|