"THE EFFICIENT SOLUTION OF THE SCHRODINGER EQUATION" - читать интересную книгу автора (Simons)

% Calculation of the coefficients of the formula (16)
%
par1:= ; (formula of the coefficient of a )
par2:=1; (formula of the coefficient of a )
par3:= ; (formula of the coefficient of a )
par4:= ; (formula of the coefficient of a )
par5:= ; (formula of the right hand side of the equation)
par10:=subs( ,par1);
par11:=subs( ,par1);
par12:=subs( ,par1);
par13:=subs( ,par1);
par20:=subs( ,par2);
par21:=subs( ,par2);
par22:=subs( ,par2);
par23:=subs( ,par2);
par30:=subs( ,par3);
par31:=subs( ,par3);
par32:=subs( ,par3);
par33:=subs( ,par3);
par40:=subs( ,par4);
par41:=subs( ,par4);
par42:=subs( ,par4);
par43:=subs( ,par4);
par50:=subs( ,par5);
par51:=subs( ,par5);
par52:=subs( ,par5);
par53:=subs( ,par5);
with(linalg);



%
% Derivation of the denominator of the coefficients
%
matd:=array(1..4,1..4,[[par10,par20,par30,par40],[par11,par21,par31,par41],
[par12,par22,par32,par42], [par13,par23,par33,par43]]);
den=det(matd);
%
% The theory shows that in order formula (16) integrates exactly (20)-(21),
% we must find:
%
% The 3th derivative w.r.t , the 2nd derivative w.r.t
% and the 1st derivative w.r.t .
%
%
den:=diff(den, $3);
den:=diff(den, $2);
den:=diff(den, $1);
%
% We substitute the values .