"THE EFFICIENT SOLUTION OF THE SCHRODINGER EQUATION" - читать интересную книгу автора (Simons)% Calculation of the coefficients of the formula (16)
% par1:= ; (formula of the coefficient of a ) par2:=1; (formula of the coefficient of a ) par3:= ; (formula of the coefficient of a ) par4:= ; (formula of the coefficient of a ) par5:= ; (formula of the right hand side of the equation) par10:=subs( ,par1); par11:=subs( ,par1); par12:=subs( ,par1); par13:=subs( ,par1); par20:=subs( ,par2); par21:=subs( ,par2); par22:=subs( ,par2); par23:=subs( ,par2); par30:=subs( ,par3); par31:=subs( ,par3); par32:=subs( ,par3); par33:=subs( ,par3); par40:=subs( ,par4); par41:=subs( ,par4); par42:=subs( ,par4); par43:=subs( ,par4); par50:=subs( ,par5); par51:=subs( ,par5); par53:=subs( ,par5); with(linalg); % % Derivation of the denominator of the coefficients % matd:=array(1..4,1..4,[[par10,par20,par30,par40],[par11,par21,par31,par41], [par12,par22,par32,par42], [par13,par23,par33,par43]]); den=det(matd); % % The theory shows that in order formula (16) integrates exactly (20)-(21), % we must find: % % The 3th derivative w.r.t , the 2nd derivative w.r.t % and the 1st derivative w.r.t . % % den:=diff(den, $3); den:=diff(den, $2); den:=diff(den, $1); % % We substitute the values . |
|
© 2026 Библиотека RealLib.org
(support [a t] reallib.org) |