"THE EFFICIENT SOLUTION OF THE SCHRODINGER EQUATION" - читать интересную книгу автора (Simons)

par54:=subs( ,par5);
par60:=subs( ,par6);
par61:=subs( ,par6);
par62:=subs( ,par6);
par63:=subs( ,par6);
par64:=subs( ,par6);
with(linalg);
%
% Derivation of the denominator of the coefficients
%
matd:=array(1..5,1..5,[[par10,par20,par30,par40,par50],[par11,par21,par31,par41,par5
1], [par12,par22,par32,par42,par52], [par13,par23,par33,par43,par53], [par14,par24,
par34,par44,par54]]);
den=det(matd);
%
% The equations will be solved by an application of Cramer’s rule.
% From the theory of exponentially-fitted methods it has been proved
% that to avoid divisions by zero valued determinants we must apply
% the L’Hospital’s rule. Hence we find the appropriate derivatives of the
% determinants of the matrices. The theory shows that in order formula
% (14) integrates exactly (11), we must find:
%
% The 4th derivative w.r.t , the 3th derivative w.r.t , the 2nd
% derivative w.r.t and the 1st derivative w.r.t .
%
%
den:=diff(den, $4);
den:=diff(den, $3);
den:=diff(den, $2);
den:=diff(den, $1);
%
% We subsititute the values .
%
den:=subs( =w,den);
den:=subs( =w,den);
den:=subs( =w,den);
den:=subs( =w,den);
den:=subs( =w,den);
den:=combine(den);
%
% For the following matrices we repeat the steps described above.
% These will determine the appropriate numerators.
%
%
% Calculation of the coefficient .
%
matq1:=array(1..5,1..5,[[par60,par20,par30,par40,par50],[par61,par21,par31,par41,par
51], [par62,par22,par32,par42,par52], [par63,par23,par33,par43,par53], [par64,par24,
par34,par44,par54]]);
dq1=det(matq1);