"THE EFFICIENT SOLUTION OF THE SCHRODINGER EQUATION" - читать интересную книгу автора (Simons)par54:=subs( ,par5);
par60:=subs( ,par6); par61:=subs( ,par6); par62:=subs( ,par6); par63:=subs( ,par6); par64:=subs( ,par6); with(linalg); % % Derivation of the denominator of the coefficients % matd:=array(1..5,1..5,[[par10,par20,par30,par40,par50],[par11,par21,par31,par41,par5 1], [par12,par22,par32,par42,par52], [par13,par23,par33,par43,par53], [par14,par24, par34,par44,par54]]); den=det(matd); % % The equations will be solved by an application of Cramer’s rule. % From the theory of exponentially-fitted methods it has been proved % that to avoid divisions by zero valued determinants we must apply % the L’Hospital’s rule. Hence we find the appropriate derivatives of the % determinants of the matrices. The theory shows that in order formula % (14) integrates exactly (11), we must find: % % The 4th derivative w.r.t , the 3th derivative w.r.t , the 2nd % derivative w.r.t and the 1st derivative w.r.t . % den:=diff(den, $4); den:=diff(den, $3); den:=diff(den, $2); den:=diff(den, $1); % % We subsititute the values . % den:=subs( =w,den); den:=subs( =w,den); den:=subs( =w,den); den:=subs( =w,den); den:=subs( =w,den); den:=combine(den); % % For the following matrices we repeat the steps described above. % These will determine the appropriate numerators. % % % Calculation of the coefficient . % matq1:=array(1..5,1..5,[[par60,par20,par30,par40,par50],[par61,par21,par31,par41,par 51], [par62,par22,par32,par42,par52], [par63,par23,par33,par43,par53], [par64,par24, par34,par44,par54]]); dq1=det(matq1); |
|
© 2026 Библиотека RealLib.org
(support [a t] reallib.org) |