"Там, где не слышно голоса" - читать интересную книгу автора (Соучек Людвик)

Танцующие стрелки

Павел Львович Шиллинг вошел в историю электротехники не только своими опытами с минами. В Мюнхене, куда он был назначен советником русского императорского посольства, Шиллинг продолжал опыты по исследованию электричества. Здесь он познакомился с Зоммерингом и его непризнанным изобретением. Оба ученых встречались на собраниях Академии.

Война закончилась. Побежденный Наполеон доживал свои дни в ссылке на далеком острове св. Елены в Атлантическом океане. Наука переживала период своего расцвета. Развитие капитализма сопровождалось ростом промышленного производства, торговли и, конечно, развитием связи. Человечеству было нужно новое изобретение в этой области и оно получило его.

Мало кто думал и, вероятно, менее всего датский физик Эрстед, что новый шаг в развитии телеграфии будет связан с магнитной стрелкой. Маленькая стальная игла, неизменно показывающая на север, была известна давно. Уже у китайцев железная рыбка, плавающая в сосуде с водой, служила своего рода компасом. Однако только Эрстед обратил внимание на странное поведение стрелки вблизи проводника, по которому протекал электрический ток. Магнитная стрелка отклонялась от своего обычного направления. Ток выключен — и она послушно возвращается в обычное положение; но вот его опять включили, А снова стрелка начинает поворачиваться. Эрстед не сделал из своего открытия никаких практических выводов. И тем не менее это было одно из величайших открытий XIX века. Новые изобретения, казалось, поджидали тогда исследователей на каждом шагу. Наука только что начала открывать закономерности развития природы.

В 1830 году известный французский физик Ампер, разговаривая с Эрстедом о новом открытии, высказал мысль об его практическом использовании для телеграфа. Но оба ученые были слишком заняты теоретическими проблемами, слишком далеки были они от запросов практики, чтобы осуществить эту мысль. В Европе продолжали строить новые линии оптического телеграфа. По-прежнему размахивали своими «линейками» телеграфные семафоры на вершинах холмов. Дельцы, игравшие на бирже, проклинали туманы, ранние вечера и метели, ограничивавшие видимость при передачах.

Блестящий опыт знаменитого Эрстеда — изменение положения магнитной стрелки под влиянием проводника электрического тока — был первым шагом на пути к созданию телеграфа.


Единственным человеком, сразу понявшим, что открытие Эрстеда можно использовать для телеграфа, был Павел Львович Шиллинг. Через два года после того как были опубликованы сообщения об опытах датского физика, Шиллинг предложил российскому Министерству путей сообщения первый в мире проект электромагнитного телеграфа. Вопреки ожиданиям ученого, его предложение было принято холодно. Конечно, отказать государственному советнику, изобретателю мин, удостоенному благосклоннейшей милости самого царя, было трудно. Поэтому ему предложили представить образец действующего телеграфа, построенного на собственные средства. Шиллинг был небогат. Время было трудное.

И все же талантливый ученый не пожалел своих сбережений на создание телеграфной линии, связавшей Зимний дворец с Министерством путей сообщения. Первая депеша была передана по этому телеграфу в 1832 году. Телеграфный аппарат состоял из шести магнитных стрелок, к которым были прикреплены кружки, окрашенные с одной стороны в белый, а с другой стороны в черный цвет. Телеграфист, нажимая на клавиши, замыкал электрический ток, заставлявший поворачиваться стрелки, а с ними и черно-белые кружки. Шиллинг не только разработал свою телеграфную азбуку из разных комбинаций этих кружков, но и создал сокращенный код, при помощи которого можно было быстро передавать заранее условленные сообщения.

Этот телеграф, получивший название «стрелочного» (по магнитной стрелке), безотказно работал до тех пор, пока его обслуживал сам изобретатель. Однако, после того как Шиллинг вернулся на дипломатическую службу в Германию, телеграф попал в руки чиновников, плохо разбиравшихся в технике. Вскоре он испортился и был забыт. Проект и описание нового изобретения затерялись в архивах Министерства путей сообщения.

Шиллинг убедился, что ему не пробить стены чиновничьего равнодушия. Его проектом никто не интересовался. Тогда-то он и решил сообщить о своем изобретении в Германии.

Двадцать третьего сентября 1835 года в Гейдельберге, на собрании врачей и естествоиспытателей, Шиллинг продемонстрировал свой стрелочный телеграф. Аппарат действовал безупречно. Шиллинг был счастлив. Наконец ему удалось привлечь внимание ученых и общественности. Не сводя глаз, наблюдал он за председательствующим профессором Мунком, который демонстрировал аппарат. Вероятно Шиллинг тогда не заметил странно одетого молодого человека, скорее всего студента, забредшего на заседание из любопытства и сидевшего в углу. Не узнал он и того, что сразу же после заседания, закончившегося поздно ночью, этот человек разыскал механика, сделавшего для Шиллинга модель телеграфа.

— Не могли бы вы сделать для меня вторую такую же модель, но так, чтобы господин советник Шиллинг не узнал об этом? — попросил он. Несколько серебряных талеров звякнуло в его руке.

Через несколько дней студент с бакенбардами уезжал из Гейдельберга. В ящике на крыше дилижанса была упакована точная копия телеграфа Шиллинга. Пассажир предупредил кучера, чтобы тот как можно бережнее обращался с грузом, который, как молодой человек был уверен, поможет ему разбогатеть. Ведь он-то знал, кто разбирается в подобных аппаратах и сможет ему оказать помощь.

Когда дилижанс выезжал за городские ворота, пассажиры должны были назвать таможенному служащему свои фамилии. Назвал ее и новоиспеченный обладатель телеграфного аппарата. Это был англичанин — мистер Уильям Фазерхилл Кук.

Никто не подозревал, что в почтовом дилижансе в Англию уезжает точная копия телеграфа Шиллинга.


Переплыв Ла-Манш, Кук погрузил драгоценный ящик в карету и отправился за советом к известному физику Уитстону. Уитстон был знаком с опытами Эрстеда. Ему не стоило большого труда понять устройство аппарата Шиллинга (а может быть, уже Кука?). Понял он и то, что именно этот аппарат нужен Англии, где как раз в это время строились новые железные дороги. Ведь самой сложной проблемой железнодорожного транспорта была передача сообщений об отправлении поездов с одной станции на другую. Для этого применялись самые разнообразные и, как правило, неэффективные средства — сирены, выстрелы, сигнализация с помощью проводов, приводившихся в движение паровой машиной. Уитстон, не задумываясь, вступил с Куком в компанию. Тогда же, в 1837 году, мир узнал о новом изобретении, запатентованном Уитстоном и Куком (а этого в свое время не предусмотрел Шиллинг). Речь идет об электромагнитном телеграфе системы Уитстон-Кук.

По описанию, сохранившемуся в патенте, телеграф Уитстона-Кука мало чем отличался от аппарата Шиллинга. Были изменены только некоторые незначительные детали. В частности, горизонтальные магнитные стрелки были заменены вертикальными. Мы не знаем, огорчила ли Шиллинга весть о похищении его идеи, пожалел ли он о том, что помимо технического таланта не обладал той коммерческой жилкой, которая была присуща Куку.

Дело в том, что через несколько месяцев после из известия о патенте на «новое» английское изобретение, Шиллинг умер. До последних дней своей жизни он продолжал руководить работами по созданию телеграфной линии между Петербургом и Кронштадтом.

Запатентовав свой телеграф, Уитстон и Кук приступили к первым серьезным опытам. Телеграмма должна была пройти по проводу длиной в несколько миль. Чтобы облегчить свой труд, Уитстон и Кук обмотали большую часть провода вокруг стен комнаты, в которой находился телеграфный аппарат. Со стороны эта комната походила на большой кокон шелкопряда. На расстоянии одной с четвертью мили от нее — в небольшом домике неподалеку от бирмингемской железной дороги (первого заказчика, если опыт удастся) — находился второй аппарат. Затаив дыхание, Кук включил гальванический элемент и нажал клавиши передачи сигналов. Уитстон, находившийся на другом конце провода, тут же записал прием. Кружки, прикрепленные к магнитным стрелкам, меняли свое положение… Опыт удался. Телеграф работал.

Телеграф Шиллинга был вскоре усовершенствован Уитстоном. Лаборатория была опутана электрическими проводами.


Не будем, однако, несправедливы к Уитстону. Это был подлинный ученый, изобретатель ряда ценных приборов (каждый электротехник знает, например, измерительный прибор — «мостик Уитстона»). Первый вариант телеграфа Уитстона был копией аппарата Шиллинга. Однако впоследствии он внес в него ряд усовершенствований.

Черно-белые кружки были заменены пятью магнитными стрелками, расположенными на щитовой доске. Манипулируя двумя из этих стрелок, можно было «указать» нужную букву алфавита на «циферблате» (в месте пересечения осей стрелок). Клавиатура также стала проще. Она состояла всего из двенадцати клавишей, из которых два первых служили для оповещения о начале передачи.

Сходство с телеграфом Якоби (и Шиллинга) — за исключением стрелок, заменивших кружки — было отнюдь не случайным.


Кук и Уитстон впервые использовали для передачи сигналов реле, то есть усилитель механических или электрических импульсов. Это был важный шаг на пути развития телеграфа. Проходя по проводам, электрический ток слабел и на дальнем расстоянии не способен был уже включить сигнальный звонок приемного аппарата. Этого тока было, однако, достаточно для того, чтобы «замкнуть» контур приемной установки, питавшийся от собственного гальванического элемента. Сильный ток от второго элемента легко включал звонок, работающий по принципу молоточка Вагнера. Кстати, электрические звонки мало изменились с тех пор. Тот, что звонит над вашей дверью, наверняка, сконструирован по принципу молоточка Вагнера. Реле, применявшееся сначала только для оповещения о начале передачи, впоследствии помогло решить ряд важных проблем телеграфирования на дальние расстояния. Ведь без него (даже при наличии самых сильных гальванических батарей) — невозможно было бы существенно удлинить линию связи.

Но и Уитстон, и Кук осознали значение своего открытия не сразу. Поэтому запатентовали они его значительно позднее.

Гальванический элемент — проводник — реле — следующий контур-звонок — таков был первоначальный путь телеграфных сигналов. Впоследствии возникли самостоятельные телеграфные подстанции, позволяющие подключать при помощи реле в цепь неограниченное количество контуров. Это позволило питать всю линию слабым током только нескольких гальванических батарей.

Однако применение реле и новой системы стрелочных указателей не решило всех проблем. Телеграф отпугивал заказчиков бесчисленным количеством проводов, которые связывали передатчик с приемной станцией. Строительство телеграфных линий обходилось дорого. Ведь только на изоляцию, предохраняющую провода от сырости, уходили огромные средства.

Может быть, Уитстон и начал бы самостоятельно искать решение вопроса, если бы не Кук. Кук не был сторонником долгих экспериментов. А что, если познакомиться с работами других физиков, занимающихся телеграфией. Его предложение было принято. Выяснилось, что два профессора из Гёттингена — Гаусс и Вебер (последний был на двадцать семь лет моложе своего знаменитого коллеги) — уже несколько лет тому назад для собственного пользования построили в порядке научного эксперимента телеграфную линию, соединявшую рабочий кабинет Гаусса с находившейся неподалеку обсерваторией, где «король математики» сделал ряд важных астрономических открытий. Кук без зазрения совести использовал изобретение Гаусса и Вебера. При этом он даже не подозревал, что вновь перенимает идеи Шиллинга. Ведь уже несколько лет тому назад с Вебером произошел казус. Ученый заявил, что является изобретателем телеграфа, и только, когда было со всей очевидностью установлено, что его аппарат, даже в мелочах, повторяет телеграф Шиллинга, отказался от своего первоначального заявления. Оказывается, он только «улучшил и усовершенствовал» изобретение Шиллинга. Однако единственным усовершенствованием было применение в качестве источника электрической энергии не гальванической батареи, а столба Вольты.

И. Ц. Ф. Гаусс и В. Е. Вебер.


В то же время одно важное открытие принадлежит Веберу. Его заинтересовало, с какой скоростью летит по телеграфу сообщение к Гауссу. Оказалось, что эта скорость равна 300 000 километров в секунду.

Когда телеграфом двух профессоров заинтересовались Кук и Уитстон, аппарат Шиллинга был уже существенным образом усовершенствован и переделан Гауссом. Принцип действия был тот же — отклонения магнитной стрелки под воздействием электричества; прибор оставался стрелочным (визуальным), только магнитная стрелка выросла. Это была большая стальная стрела длиной в 1,21 метра, укрепленная на шелковой подвеске. На ее оси помещалось маленькое зеркальце, поворачивавшееся вместе со стрелкой. При включении тока зеркальце отклонялось то больше, то меньше, в зависимости от длительности воздействия тока. Наблюдение за зеркальцем велось через особую зрительную трубу, снабженную шкалой, с которой можно было непосредственно считывать передаваемые буквы и сигналы.

...стрела длиной 1,21 метра была главной составной частью их электромагнитного телеграфа.


Кук с Уитстоном поняли, что открытие Вебера и Гаусса имеет чрезвычайно важное значение для телеграфа. Ни одна телеграфная система, связанная целым пучком проводов, будь она даже такой совершенной, как пишущий телеграф русского ученого Б. С. Якоби, основанный на принципе падения восьми черных и белых шаров в различных комбинациях (в 1839–1843 годах он связывал Зимний дворец с Главным штабом в Петербурге), не выдержит конкуренции более простого устройства. Но отсчет сигналов при помощи зеркальца и зрительной трубы могут себе позволить разве что два чудаковатых профессора. А представьте себе железнодорожного служащего, смотрящего в зрительную трубу на другой конец комнаты, где вертится зеркальце. Смешно, не правда ли?

Уитстон усовершенствовал аппарат Гаусса, а Кук предложил новую телеграфную азбуку, которую можно было передавать при помощи единственной стрелки; и не только азбуку — но и ряд специальных знаков для телеграфистов:

одно отклонение нижнего конца стрелки вправо — Телеграфист, внимание!

два отклонения нижнего конца вправо — A

три отклонения нижнего конца вправо — B

четыре отклонения нижнего конца вправо — C

одно отклонение вправо, одно влево — D

и так далее. Если вам интересно познакомиться со всей азбукой Уитстона и Кука — взгляните на рисунок аппарата общества «Электрик Телеграф Компани». Это общество было основано обоими изобретателями. Сообщение, записанное значками Кука, выглядело вполне сносно. Впрочем, вы можете сами попробовать написать что-нибудь, пользуясь им как шифром.

Стрелочный телеграф Уитстона и Кука в том виде, в каком он был пущен в производство.


Стрелочный телеграф Уитстона и Кука был для своего времени чрезвычайно совершенным устройством. В Англии он применялся вплоть до 70-х гг. прошлого века с единственным существенным усовершенствованием, внесенным по соображениям экономии крупнейшими заказчиками телеграфа — железными дорогами.

Хотя количество проводов постепенно с первоначальных нескольких дюжин упало до двух, все же министерства железных дорог Англии, Германии и других стран требовали дальнейшего снижения стоимости телеграфных линий. Штейнгейль, немецкий ученый, о котором будет речь впереди, пытаясь удешевить строительство телеграфных линий, решил использовать в качестве второго провода железнодорожную колею. И что же — телеграф работал. Довольный успехом, Штейнгейль возвращался домой. Надо как можно скорее сообщить о новом открытии. Но вдруг он остановился, как вкопанный. Рабочие ремонтировали железнодорожное полотно. Колея, которая, по его мнению, вела ток, была прервана. Образовался промежуток в несколько метров… Штейнгейль был поражен. Деревянные шпалы служить проводником не могут, следовательно, перескочить по ним в соседнюю колею ток не мог. Да, впрочем, ведь и она была прервана. Оставалось сделать вывод, что роль второго провода взяла на себя земля.

Во всяком случае изобретатель заземления думал именно так. Увы — он ошибался. Земля не может вести слабый ток по направлению к удаленному аппарату. Она только принимает ток одного полюса и, таким образом, замыкает электрическую цепь. Вот и все.

Штейнгейль этого не знал. О своем открытии он сообщил в 1838 году. Прошел не один десяток лет, прежде чем его ошибка была исправлена.

Магнитные стрелки визуально-стрелочных телеграфов весело вертелись в тысячах аппаратов и все же…

У стрелочного телеграфа было два существенных недостатка. Во-первых, для его обслуживания требовался хорошо обученный телеграфист, способный «вычитать» из быстрых скачков стрелки передаваемое сообщение и с той же скоростью передать ответ; во-вторых: сообщение не фиксировалось. Подлинность сообщения проверялась только записью телеграфиста. Ну, а если телеграфист вышел на минутку из комнаты или вздремнул? Текст телеграммы нельзя было восстановить. Первое неудобство снималось введением аппаратов с указателями, второе — записывающим устройством.

Аппарат с указателем изобрели Уитстон и Кук. Отцом пишущего телеграфа был Штейнгейль.

Аппарат с указателем возник в результате простого рассуждения: если передача букв при помощи отклонения магнитной стрелки слишком сложна, нужно создать телеграф, который бы прямо показывал буквы. А раз уж показывать буквы, то и цифры, точки и запятые — короче, все, что нужно. От идеи до ее воплощения лежал долгий и трудный путь. Ограничиться одним усовершенствованием аппарата Шиллинга было невозможно. Поэтому новое изобретение Кука и Уитстона, или вернее общества «Электрик Телеграф Компани», появилось только в 1840 году. Это был стрелочный телеграф с часовым механизмом. Да, именно часовой механизм оказался долгожданной новинкой. Часовой механизм приводил в движение зубчатое колесо со стрелкой. На круглой шкале были обозначены буквы, цифры и знаки. Колесо со стрелкой поворачивалось только тогда, когда электромагнит оттягивал защелку-собачку. Таким образом, каждый электрический импульс «отпускал» колесико на один зуб вперед, то есть подводил стрелку к следующей букве.

Более удачным был стрелочный телеграф с указателем, сконструированный обоими изобретателями на ином принципе.


Устройство работало медленно, зато обслуживать его мог по существу любой человек, знающий азбуку.

Взгляните на рисунок. Колесико поворачивалось только в одном направлении, по движению часовой стрелки. Если телеграфисту надо было передать слово «а» (по-английски — «прибавлять»), то сначала он должен был поставить стрелку против буквы «а», затем тремя импульсами перескочить к букве «в», затем повернуть стрелку на 360°, чтобы снова показать букву «а». Не думайте только, что импульсы следовали друг за другом со скоростью пулеметной очереди. Ничего подобного. Передавать нужно было с чувством, с толком, с расстановкой, чтобы электромагнит, зубчатое колесо и часовой механизм работали точно, без срывов. Нужно было бережно обращаться с зубчатыми колесами, так как некоторые их части были сделаны из слоновой кости.

Телеграф с указателем стал весьма популярным средством связи, в особенности на железной дороге, где его обслуживали неспециалисты. Вероятно, тогда у людей было больше времени, и они могли терпеливо ждать, пока стрелка опишет полный круг. Как знать?

Второй недостаток телеграфа — отсутствие записи — в 1837 году устранил уже названный нами К. А. Штейнгейль, разносторонний физик, который оставил заметный след в науке об электричестве, в механике и, главным образом, в оптике. Штейнгейля нисколько не удивило, когда Гаусс и Вебер обратились к нему с просьбой усовершенствовать и приспособить для практических целей их неуклюжий аппарат со зрительной трубой. Штейнгейль сохранил длинную магнитную стрелку, но отказался от метода отсчета по шкале. Его удовлетворяло простое отклонение вправо и влево. Чтобы за стрелкой вообще не нужно было наблюдать, он присоединил к ней два колокольчика с различной тональностью. Телеграфист мог спокойно лежать на кушетке и смотреть в полоток, «читая» сообщение по звукам колокольчиков. Однако и это усовершенствование не удовлетворило Штейнгейля. В своем аппарате он тоже решил использовать часовой механизм, однако в других целях, нежели у Кука и Уитстона. Часовой механизм медленно передвигал бумажную ленту. На обоих концах магнитной стрелки были укреплены кисточки, обмакивающиеся в краске. Всякое отклонение стрелки оставляло на ленте след в виде пятна или линии. Но изобретатель не остановился на этом. Миски с краской нужно было постоянно доливать, кисточки обтрепывались, краска на них засыхала — попросту говоря, изобретение не было достаточно совершенно. Поэтому кисточки были вскоре заменены двумя иглами, которые прокалывали в ленте двумя рядами дырки в соответствии с кодом, предложенным самим же Штейнгейлем. Сообщение записывалось, и его можно было прочесть в любое время.

Штейнгейль усовершенствовал аппарат Гаусса и Вебера. Ему принадлежит проект первого пишущего телеграфа в мире (А — записывающее устройство; В и С — звуковые сигнальные устройства).


Вам кажется, что все кончено? Что надежно работающие стрелочные и записывающие телеграфные аппараты осуществили древнюю мечту человека о передаче сообщений на расстояние, которое не преодолеть голосу?

Отнюдь нет! Это всего лишь конец эпохи первых экспериментов. Мы в самом начале пути.

Плавные движения громадной магнитной стрелки, ее медленное движение по шкале с буквами, рывки стрелочного аппарата — все это уже в момент изобретения безнадежно отставало от потребностей времени. Человеческие запросы обгоняли развитие телеграфии. По железнодорожным линиям ходило уже не по одному поезду в день, газеты уже не удовлетворялись сообщениями в несколько строк; нельзя было осуществлять с помощью нескольких коротких приказов командование большими армиями, которые формировались во всех странах Европы. Нужно было передавать все больше сообщений, требований, приказов и делать все это быстрее. Изобретения Уитстона, Кука, Штейнгейля, Гаусса и Вебера полностью исчерпали возможности, заложенные в открытии Шиллинга. Нужно было искать новые пути.

Ученые не подозревали, что первооткрывателем этих путей станет не их собрат, ученый, а художник. Имя этого человека известно всякому мальчишке. Его звали Самуэл Морзе. Он создал не только азбуку Морзе, но и первый телеграф современной конструкции.