"Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)" - читать интересную книгу автора (Грин Брайан)

Глава 5. Необходимость новой теории: общая теория относительности versus квантовая механика

За последнее столетие наше понимание физического мира чрезвычайно углубилось. Теоретический аппарат квантовой механики и общей теории относительности позволил понять и предсказать доступные экспериментальной проверке физические явления, происходящие как на масштабах атомного и субатомного мира, так и на масштабах галактик, скоплений галактик и самой Вселенной в целом. Это фундаментальное достижение. Поистине вдохновляет то, что существа, обитающие на одной из планет, обращающейся вокруг заурядной звезды на окраине ничем не примечательной галактики, сумели путем размышлений и эксперимента выяснить и постичь ряд самых загадочных свойств физического мира. Тем не менее физики так устроены, что они никогда не будут удовлетворены до тех пор, пока не почувствуют, что достигли глубочайшего и наиболее фундаментального понимания Вселенной. Это то, что Стивен Хокинг назвал первым шагом к познанию «замысла Бога».[37]

Существует много свидетельств того, что квантовая механика и общая теория относительности не позволяют достичь этого глубочайшего уровня понимания. Поскольку их обычные области применения столь сильно различаются, в большинстве случаев требуется использование либо квантовой механики, либо общей теории относительности, но не обеих теорий одновременно. Но в некоторых экстремальных условиях, когда тела очень массивны и одновременно чрезвычайно малы по размерам (например, вещество вблизи центра черных дыр или Вселенная в целом в момент Большого взрыва), для полного понимания требуется как общая теория относительности, так и квантовая механика. Однако, подобно встрече огня и пороха, попытка объединения квантовой механики и общей теории относительности приводит к разрушительной катастрофе. При объединении уравнений этих теорий правильно поставленные физические задачи дают бессмысленные ответы. Бессмыслица часто принимает форму прогноза, что квантово-механическая вероятность некоторых процессов равна не 20, 73 или 91%, а бесконечности. Но что же может означать вероятность, превышающая единицу, не говоря уже о бесконечности? Мы вынуждены заключить, что здесь есть какой-то серьезный порок. Внимательно анализируя основные понятия общей теории относительности и квантовой механики, можно выяснить, что же это за порок.

Суть квантовой механики

Когда Гейзенберг открыл соотношение неопределенностей, в физике произошел резкий поворот, и назад пути нет. Вероятности, волновые функции, интерференция и кванты — все это требует радикально новых способов видения мира. Однако не исключено, что какой-нибудь твердолобый физик-«классик» продолжает держаться за тонкую нить надежды, что когда все уляжется, эти отклонения от «классики» удастся встроить в систему понятий, не слишком сильно отличающуюся от прежних представлений. Однако соотношение неопределенностей ясно и недвусмысленно отрицает любую возможность возврата к прошлому.

Соотношение неопределенностей утверждает, что при переходе к меньшим расстояниям и меньшим промежуткам времени жизнь Вселенной становится все более неистовой. Мы столкнулись с некоторыми свидетельствами этого при описании в предыдущей главе попыток точного определения положения элементарных частиц, таких как электроны. Освещая электроны светом все возрастающей частоты, мы измеряем их положение со все большей точностью, но за это приходится платить тем, что сами измерения вносят все большие возмущения. Высокочастотные фотоны обладают большой энергией и, следовательно, дают электронам резкий «толчок», значительно изменяющий их скорости. Подобно беспорядку в комнате, полной детей, мгновенное положение которых вам известно с большой точностью, но скорость которых, точнее, величину скорости и направление перемещения, вы почти не можете контролировать, эта неспособность определить одновременно положение и скорость элементарных частиц свидетельствует об изначальной хаотичности микромира.

Хотя этот пример выражает фундаментальную связь между неопределенностью и хаосом, на самом деле он раскрывает только часть общей картины. Например, можно было бы думать, что неопределенность возникает только тогда, когда мы — бестактные наблюдатели — вмешиваемся в происходящее на сцене мироздания. Это не верно. Пример попытки удержать электрон в небольшой коробке и его бурная реакция на это — увеличение скорости и хаотичности движения — подводит нас немного ближе к истине. Даже без «прямых столкновений» с вносящими возмущение «экспериментаторскими» фотонами скорость электрона резко и непредсказуемо изменяется от одного момента времени к другому. Но и этот пример не раскрывает все ошеломляющие свойства микромира, следующие из открытия Гейзенберга. Даже в самой спокойной ситуации, которую только можно себе представить, например, в пустой области пространства, согласно соотношению неопределенностей в микромире имеет место невероятная активность. И эта активность возрастает по мере уменьшения масштабов расстояния и времени.

В понимании этого ключевую роль играет принцип квантово-механического баланса. Мы видели в предыдущей главе, что точно так же, как вы можете занять денег, чтобы решить важные финансовые проблемы, частица (например, электрон) может временно занять энергию, чтобы преодолеть реальный физический барьер. Это так. Но квантовая механика заставляет нас углубить эту аналогию. Представьте себе маниакального заемщика, который ходит от одного приятеля к другому, прося денег взаймы. Чем короче период времени, на который приятель может дать ему деньги, тем большую сумму он просит. Занимает и отдает, занимает и отдает — снова и снова он берет деньги в долг только для того, чтобы вскоре вернуть их. Как цены на акции в те дни, когда биржа ведет себя подобно американским горкам, количество денег, которые есть у маниакального заемщика в любой заданный момент времени, испытывает чрезвычайно сильные колебания, но по завершении всех этих операций его финансовый баланс находится в том же состоянии, в котором он был в начале.

Из соотношения неопределенностей Гейзенберга следует, что подобный хаотический перенос энергии и импульса непрерывно происходит во Вселенной на микроскопических расстояниях и в микроскопическом временном масштабе. Согласно соотношению неопределенностей, даже в пустых областях пространства (например, в пустой коробке) энергия и импульс являются неопределенными: они флуктуируют между крайними значениями, которые возрастают по мере уменьшения размеров коробки и временного масштаба, на котором проводятся измерения. Это выглядит так, как если бы область пространства внутри коробки являлась маниакальным «заемщиком» энергии и импульса, непрерывно беря «в долг» у Вселенной и неизменно «возвращая долг». Но что участвует в этих обменах, например, в пустой области пространства? Все. В буквальном смысле слова. Энергия (как и импульс) являются универсальной конвертируемой валютой. Формула E = mc2 говорит нам, что энергия может превращаться в материю и наоборот. Например, если флуктуации энергии достаточно велики, они могут привести к мгновенному возникновению электрона и соответствующей ему античастицы — позитрона, даже в области, которая первоначально была пустой! Поскольку энергия должна быть быстро возвращена, данные частицы должны спустя мгновение аннигилировать, высвободив энергию, заимствованную при их создании. То же самое справедливо для всех других форм, которые могут принимать энергия и импульс — при рождении и аннигиляции других частиц, сильных колебаниях интенсивности электромагнитного поля, флуктуациях полей сильного и слабого взаимодействий. Квантово-механическая неопределенность говорит нам, что в микроскопическом масштабе Вселенная является ареной, изобилующей бурными и хаотическими событиями. Как заметил однажды Фейнман, «возникать и аннигилировать, возникать и аннигилировать — какая пустая трата времени».[38] Поскольку заем и возврат в среднем компенсируют друг друга, пустая область в пространстве продолжает выглядеть тихой и спокойной, если исследовать ее в любом масштабе, кроме микроскопического. Однако соотношение неопределенностей указывает, что макроскопическое усреднение скрывает интенсивную микроскопическую активность.[39] Как мы увидим вскоре, этот хаос и является препятствием к слиянию общей теории относительности и квантовой механики.

Квантовая теория поля

На протяжении 1930-х и 1940-х гг. физики-теоретики во главе с такими личностями, как Поль Дирак, Вольфганг Паули, Юлиан Швингер, Фриман Дайсон, Син-Итиро Томонага и Фейнман, не покладая рук пытались разработать математический аппарат, который помог бы справиться с буйством микромира. Они установили, что квантовое волновое уравнение Шредингера (упомянутое в главе 4) на самом деле дает только приближенное описание физики микромира. Это приближенное описание работает очень хорошо, пока вы не пытаетесь (экспериментально или теоретически) слишком глубоко залезть в микроскопический хаос, но определенно отказывается работать, если кто-то делает такую попытку.

Основным  разделом  физики,  которым Шредингер пренебрег в своей формулировке квантовой механики, была специальная теория относительности. На самом деле Шредингер сначала сделал попытку включить специальную теорию относительности, но полученное в результате квантовое уравнение давало предсказания, находившиеся в противоречии с экспериментальными данными для атома водорода. Это побудило Шредингера воспользоваться широко применяемым в физике подходом «разделяй и властвуй»: вместо того, чтобы пытаться одним махом объединить в новой теории все, что известно о физическом мире, часто гораздо выгоднее бывает делать небольшие шаги, которые последовательно включают новейшие открытия, сделанные на переднем крае исследований. Шредингер искал и нашел математический аппарат, который позволил учесть экспериментально подтвержденный корпускулярно-волновой дуализм, но он не смог на этой стадии включить в рассмотрение специальную теорию относительности.[40]

Однако вскоре физики осознали, что специальная теория относительности крайне важна для корректной формулировки законов квантовой механики. Хаос микромира требует признания, что энергия может проявлять себя самыми различными способами. Впервые это было осознано в формуле специальной теории относительности E = mc2. Игнорируя специальную теорию относительности, подход Шредингера не учитывал взаимопревращаемость материи, энергии и движения.

Прежде всего физики сконцентрировали свои усилия на попытках объединить специальную теорию относительности с принципами квантовой механики при описании электромагнитного поля и его взаимодействия с веществом. В результате серии вдохновляющих достижений они создали квантовую электродинамику. Это был пример теории, впоследствии получившей название релятивистской квантовой теории поля или, кратко, квантовой теории поля. Такая теория является квантовой, поскольку она с самого начала строилась с использованием понятий вероятности и неопределенности; она является теорией поля, поскольку объединяет понятия квантовой механики и ранее существовавшее классическое представление о силовом поле, и данном случае, максвелловском электромагнитном поле. Наконец, эта теория является релятивистской, поскольку с самого начала учитывает специальную теорию относительности. (Если вам нужен визуальный образ квантового поля, вы можете использовать образ классического поля, скажем, океан невидимых силовых линий, пронизывающих пространство, дополнив его в двух отношениях. Во-первых, вы должны представить квантовое поле образованным из частиц-составляющих, таких как фотоны в случае электромагнитного поля. Во-вторых, вы должны представить, что энергия, сосредоточенная в массах частиц и их движении, бесконечно много раз переходит от одного квантового поля к другому в процессе их непрерывных осцилляции в пространстве и времени.)

Квантовая электродинамика, бесспорно, является наиболее точной из когда-либо созданных теорий, описывающих природные явления. Иллюстрацию ее точности можно найти в работах Тойхиро Киношиты, специалиста по физике элементарных частиц из Корнелльского университета, который в течение последних 30 лет неутомимо использовал квантовую электродинамику для расчета некоторых тонких свойств электронов. Расчеты Киношиты заполняют тысячи страниц, и в конце концов потребовали для завершения самых мощных из когда-либо созданных компьютеров. Но затраченные им усилия принесли свои плоды, позволив рассчитать характеристики электронов, которые подтвердились экспериментально с точностью, превышающей одну миллиардную. Это согласие между результатами абстрактных теоретических вычислений и данными реального мира совершенно поразительно. С помощью квантовой электродинамики физики смогли подтвердить роль фотонов как «наименьших возможных сгустков света» и описать их взаимодействие с электрически заряженными частицами в рамках математически законченной модели, позволяющей получать убедительные предсказания.

Успех квантовой электродинамики побудил других физиков в  1960-х и  1970-х гг. попытаться использовать аналогичный подход для квантово-механического описания слабого, сильного и гравитационного взаимодействий. Для слабого и сильного взаимодействий этот подход оказался чрезвычайно плодотворным. Физики сумели, по аналогии с квантовой электродинамикой, разработать квантово-полевые теории сильного и слабого взаимодействий, получившие название квантовой хромодинамики и квантовой теории электрослабых взаимодействий. Название «квантовая хромодинамика» выбрано из-за колорита, более логичным было бы «квантовая динамика сильных взаимодействий», но это всего лишь название без глубокого смысла. С другой стороны, название «электрослабое» указывает на важную веху в нашем понимании взаимодействий в природе. В работе, за которую Шелдон Глэшоу, Абдус Салам и Стивен Вайнберг получили Нобелевскую премию, они показали, что слабое и электромагнитное взаимодействия естественным образом объединяются в квантово-полевом описании, несмотря на то, что их проявления в окружающем нас мире столь разительно различаются. Слабое взаимодействие имеет исчезающе малую величину во всех масштабах, кроме субатомного, тогда как электромагнитные поля — видимый свет, радио- и телевизионные сигналы, рентгеновское излучение — неоспоримо присутствуют в нашем макроскопическом мире. Тем не менее, Глэшоу, Салам и Вайнберг показали, что при достаточно высоких энергиях и температурах, которые существовали спустя долю секунды после Большого взрыва, электромагнитное и слабое взаимодействия были слиты одно с другим, их характеристики были неразличимы. Поэтому им дали более точное название электрослабых взаимодействий. Вследствие не прекращающегося со времен Большого взрыва снижения температуры из единого высокотемпературного состояния разными путями выкристаллизовались электромагнитное и слабое взаимодействия в ходе процесса, известного под названием нарушение симметрии, который мы опишем ниже. В результате эти взаимодействия приобрели различный облик в той холодной Вселенной, в которой мы обитаем в настоящее время.

Итак, если вы следите за хронологией, к 1970-м гг. физики разработали успешное квантово-механическое описание трех из четырех взаимодействий (сильного, слабого и электромагнитного), а также показали, что два из трех последних (слабое и электромагнитное взаимодействия) фактически имеют общее происхождение (электрослабое взаимодействие). В течение последних десятилетий физики подвергли это квантово-механическое описание трех негравитационных сил (как они взаимодействуют между собой и с введенными в главе 1 частицами материи) самой разнообразной экспериментальной проверке. Теория с успехом выдержала нее проверки. Когда экспериментаторы измерили значения 19 параметров (масс частиц, приведенных в табл. 1.1, констант взаимодействия для этих частиц, показанных в таблице в примечании [3] к главе 1, интенсивностей трех негравитационных взаимодействий в табл. 1.2, а также ряда других величин, обсуждать которые нет необходимости), а теоретики подставили полученные значения в формулы квантово-полевых теорий для сильного, слабого и электромагнитного взаимодействий частиц материи, предсказания этих теорий с поразительной точностью совпали с экспериментальными данными. Совпадение наблюдается вплоть до энергий, способных расщепить материю на частицы, размер которых составляет одну миллиардную от одной миллиардной метра, что является пределом для современного уровня развития техники. По этой причине физики называют теорию трех негравитационных взаимодействий и три семейства частиц материи стандартной теорией, или (чаще) стандартной моделью физики элементарных частиц.

Частицы-посланники

Так же, как для электромагнитного поля, наименьшим элементом которого является фотон, для полей сильного и слабого взаимодействий согласно стандартной модели имеются свои наименьшие элементы. Как упоминалось в главе 1, мельчайшие сгустки сильного взаимодействия известны под названием глюонов, а соответствующие сгустки слабого взаимодействия — под названием калибровочных бозонов слабого взаимодействия (точнее, W-бозонов и Z-бозонов). Стандартная модель предписывает нам рассматривать эти сгустки как не имеющие внутренней структуры — в рамках данной модели они столь же элементарны, как частицы, входящие в состав трех семейств частиц материи.

Фотоны, глюоны и калибровочные бозоны слабого взаимодействия обеспечивают микроскопический механизм передачи взаимодействий, которые они представляют. Например, чтобы представить себе, как одна электрически заряженная частица отталкивает другую частицу с одноименным зарядом, можно вообразить, что каждая частица окружена электрическим полем — «облаком» или «туманом», являющимся носителем «электрических свойств», — а воздействие, воспринимаемое каждой частицей, обусловлено взаимодействием их силовых полей. Более точное описание отталкивания частиц на микроскопическом уровне выглядит несколько иначе. Электромагнитное поле состоит из полчищ фотонов; взаимодействие между двумя заряженными частицами на самом деле является результатом взаимного «обстрела» фотонами. Если использовать грубую аналогию, это похоже на изменение траекторий двух конькобежцев, обстреливающих друг друга градом шаров для боулинга. Подобным же образом и две электрически заряженные частицы влияют друг на друга, обмениваясь мельчайшими частицами света.

Существенным недостатком аналогии с конькобежцами является то, что обмен шарами для боулинга всегда приводит к «отталкиванию»: он увеличивает расстояние между конькобежцами. С другой стороны, две частицы, несущие противоположный заряд, также взаимодействуют между собой, обмениваясь фотонами, но результирующая электромагнитная сила является притягивающей. Это выглядит так, как если бы фотон был переносчиком не взаимодействия как такового, а скорее послания о том, как получатель должен реагировать на соответствующее взаимодействие. Частицам, несущим одноименный заряд, фотон передает сообщение «отдаляйтесь», а частицам с разноименным зарядом — «сближайтесь». По этой причине фотон иногда называют частицей-посланником электромагнитного взаимодействия. Аналогичным образом глюоны и слабые калибровочные бозоны являются частицами-посланниками сильного и слабого атомного взаимодействия. Сильное взаимодействие, которое удерживает кварки внутри протонов и нейтронов, возникает за счет обмена глюонами между кварками. Можно сказать, что глюоны создают «клей», удерживающий эти субатомные частицы вместе. Слабое взаимодействие, отвечающее за некоторые виды превращений частиц при радиоактивном распаде, передается посредством калибровочных бозонов слабого взаимодействия.

Калибровочная симметрия

Вы, наверное, уже заметили, что в нашем обсуждении квантовой теории взаимодействий в природе не упоминается гравитация. Зная, что у физиков имеется подход, который они успешно использовали для трех других взаимодействий, вы можете ожидать, что они пытались разработать квантово-полевую теорию гравитационного взаимодействия, в которой частицей, передающей гравитационное взаимодействие, будет наименьший сгусток гравитационного поля, гравитон. На первый взгляд это предположение кажется особенно уместным в силу того, что квантовая теория трех негравитационных взаимодействий выявила волнующее сходство между ними и свойством гравитационного поля, с которыми мы столкнулись в главе 3.

Вспомним, что гравитационное взаимодействие позволяет объявить, что все наблюдатели — независимо от состояния движения — являются абсолютно равноправными. Даже те, движение которых кажется нам ускоренным, могут заявить, что находятся в состоянии покоя, поскольку могут приписать испытываемую ими силу действию гравитационного поля. В этом смысле гравитация налагает симметрию: она гарантирует равноправие всех возможных точек зрения и всех возможных систем отсчета. Сходство с сильным, слабым и электромагнитным взаимодействиями состоит в том, что они тоже связаны с симметриями, хотя эти виды симметрии значительно более абстрактны по сравнению с той, которая связана с гравитацией.

Для того чтобы получить общее представление об этих достаточно тонких принципах симметрии, рассмотрим один важный пример. Как указано в таблице, содержащейся в примечании [3] к главе 1, каждый кварк может быть окрашен в один из трех «цветов» (вычурно названных красным, зеленым и синим, хотя это не более чем условность и не имеет никакого отношения к цвету в обычном понимании этого слова). Эти цвета определяют его реакцию на сильное взаимодействие точно так же, как электрический заряд определяет реакцию на электромагнитное взаимодействие. Все полученные к настоящему времени данные свидетельствуют о том, что между кварками наблюдается симметрия: все взаимодействия между одноцветными кварками (красного с красным, зеленого с зеленым или синего с синим) являются идентичными, как и идентичными являются взаимодействия между разноцветными кварками (красного с зеленым, зеленого с синим или синего с красным). На самом деле факты еще более поразительны. Если три цвета, т.е. три различных сильных заряда, сдвинуть определенным образом (грубо говоря, если на нашем вычурном цветовом языке красный, зеленый и синий изменятся и станут, например, желтым, индиго и фиолетовым), то даже если параметры сдвига будут меняться от одного момента времени к другому и от точки к точке, взаимодействие между кварками останется совершенно неизменным. Рассмотрим сферу: она является примером тела, обладающего вращательной симметрией, поскольку выглядит одинаково независимо от того, как мы вращаем ее в руках и под каким углом на нее смотрим. Аналогично можно сказать, что наша Вселенная обладает симметрией сильного взаимодействия: физические явления не изменятся при сдвигах зарядов этого взаимодействия — Вселенная совершенно не чувствительна к ним. По историческим причинам физики говорят, что симметрия сильного взаимодействия является примером калибровочной симметрии.[41]

Здесь следует подчеркнуть один существенный момент. Как показали работы Германа Вейля 1920-х гг., а также работы Чень-Нин Янга и Роберта Миллса 1950-х гг., аналогично тому, что симметрия между всеми возможными точками наблюдения в общей теории относительности требует существования гравитационной силы, калибровочная симметрия требует существования других видов сил. Подобно тому, как чувствительная система контроля параметров окружающей среды поддерживает на постоянном уровне температуру, давление и влажность воздуха путем компенсации внешних воздействий, некоторые типы силовых полей, согласно Янгу и Миллсу, обеспечивают компенсацию сдвигов зарядов сил, сохраняя неизменность физических взаимодействий между частицами. В случае калибровочной симметрии, связанной со сдвигом цветовых зарядов кварков, требуемая сила представляет собой не что иное, как само сильное взаимодействие. Иными словами, если бы не было сильного взаимодействия, физика могла бы измениться при упомянутом выше сдвиге цветовых зарядов. Это показывает, что хотя гравитационное и сильное взаимодействия имеют совершенно различные свойства (вспомним, например, что гравитация гораздо слабее сильного взаимодействия и действует на гораздо больших расстояниях), они, в определенном смысле, имеют общее происхождение: каждое из них необходимо для того, чтобы Вселенная обладала какой-то конкретной симметрией. Более того, аналогичные рассуждения, примененные к слабому и электромагнитному взаимодействиям, показывают, что их существование также связано с некоторыми видами калибровочной симметрии — так называемой слабой и электромагнитной калибровочной симметриями. Таким образом, все четыре взаимодействия непосредственно связаны с принципами симметрии.

Эта общая характеристика всех четырех взаимодействий, казалось бы, говорит в пользу предположения, сделанного в начале настоящего раздела. А именно, в наших попытках объединить квантовую механику и общую теорию относительности мы должны вести поиск в направлении квантово-полевой теории гравитационного взаимодействия, следуя примеру успешной разработки квантово-полевых теорий трех других видов взаимодействия. На протяжении многих лет эта логика вдохновляла группу выдающихся физиков на разработку такой теории, однако путь к ней оказался усеян препятствиями, и никому не удалось пройти его полностью. Попытаемся понять почему.

Общая теория относительности и квантовая механика

Обычной областью применения общей теории относительности являются огромные, астрономические масштабы расстояний. Согласно теории Эйнштейна, на этих масштабах отсутствие масс означает, что пространство является плоским, как показано на рис. 3.3. Пытаясь объединить общую теорию относительности и квантовую механику, мы должны резко изменить фокусировку и исследовать свойства пространства в микроскопическом масштабе. Мы продемонстрировали это на рис. 5.1 путем последовательного увеличения масштаба и перехода к уменьшающимся областям пространства. По мере того, как мы увеличиваем масштаб, на первых порах не происходит ничего особенного; можно видеть, что на первых трех уровнях увеличения на рис. 5.1 структура пространства сохраняет свои основные свойства. Если подходить с сугубо классической точки зрения, мы могли бы рассчитывать на то, что такая спокойная и плоская структура пространства будет сохраняться все время, вплоть до любого, произвольно малого масштаба расстояний. Однако квантовая механика радикально меняет эту картину. Объектом квантовых флуктуации, управляемых соотношением неопределенностей, является все — даже гравитационное поле.

Рис. 5.1. Рассматривая область пространства при все большем увеличении, можно исследовать свойства пространства на ультрамикроскопическом уровне. Попытки объединить общую теорию относительности и квантовую механику наталкиваются на кипящую квантовую пену, проявляющуюся при самом большом увеличении.

Хотя классическая теория говорит, что гравитационное поле в пустом пространстве равно нулю, квантовая механика показывает, что оно будет нулевым в среднем, а его текущее значение будет изменяться за счет квантовых флуктуаций. Более того, соотношение неопределенностей говорит нам, что размер флуктуации гравитационного поля будет возрастать при переходе ко все меньшим областям пространства. Квантовая механика показывает, что никому не нравится, когда его загоняют в угол; уменьшение пространственной фокусировки ведет к росту флуктуаций. Поскольку гравитационное поле проявляется в кривизне пространства, эти квантовые флуктуации выражаются в его чудовищных деформациях. Мы можем наблюдать проявление таких деформаций на четвертом уровне увеличения на рис. 5.1. При переходе к еще меньшему масштабу расстояний, такому, как на пятом уровне рис. 5.1, мы видим, что случайные квантово-механические флуктуации гравитационного поля соответствуют такому сильному искривлению пространства, что оно совсем перестает напоминать мягко искривленные геометрические объекты типа резиновой пленки, которую мы использовали в качестве аналогии в главе 3. Скорее оно принимает вспененную, турбулентную и скрученную форму, показанную в верхней части рисунка. Джон Уилер предложил для описания такого хаоса, обнаруживаемого при изучении ультрамикроскопической структуры пространства (и времени), термин квантовая пена — описывающий незнакомую нам область Вселенной, в которой обычные понятия «налево и направо», «вперед и назад», «вверх и вниз» (и даже «до и после») теряют свой смысл. Именно на таких малых расстояниях мы сталкиваемся с фундаментальной несовместимостью общей теории относительности и квантовой механики. Понятие гладкости геометрии пространства, являющееся основным принципом общей теории относительности, рушится под напором неистовых флуктуации квантового мира, существующих в масштабе ультрамикроскопических расстояний. В ультрамикроскопическом масштабе основное свойство квантовой механики — соотношение неопределенностей — вступает в прямое противоречие с центральным принципом общей теории относительности — гладкой геометрической моделью пространства (и пространства-времени).

На практике этот конфликт проявляется в весьма конкретном виде. Расчеты, основанные на совместном использовании уравнений общей теории относительности и квантовой механики, обычно дают один и тот же нелепый ответ: бесконечность. Подобно подзатыльнику, полученному от школьного учителя старых времен, бесконечность в ответе — это способ, с помощью которого природа сообщает, что мы делаем что-то не так, как надо.[42] Уравнения общей теории относительности не могут справиться с безумным хаосом квантовой пены.

Заметим, однако, что по мере того, как мы возвращаемся к обычным масштабам расстояний (проходя последовательность на рис. 5.1 в обратном порядке), неистовые случайные колебания, свойственные микроскопическим расстояниям, начинают гасить друг друга. В результате (точно так же, как среднее по банковскому счету нашего маниакального заемщика не обнаруживает никаких признаков его мании) понятие гладкости геометрии нашего пространства вновь становится точным. Это похоже на растровый рисунок в книге или газете: при взгляде издалека точки, образующие рисунок, сливаются и создают впечатление гладкого изображения, в котором вариации яркости плавно и незаметно изменяются от участка к участку. Однако если вы посмотрите на этот рисунок с более близкого расстояния, вы увидите, что он совсем не так гладок, как выглядит издалека. На самом деле он представляет собой набор дискретных точек, каждая из которых четко отделяется от других. Однако обратите внимание, что вы смогли узнать о дискретности рисунка, только рассмотрев его вблизи: издалека он выглядит гладким. Точно так же и структура пространства-времени кажется нам гладкой, за исключением тех случаев, когда мы исследуем ее с ультрамикроскопическим разрешением. Это объясняет, почему общая теория относительности работает на достаточно крупных масштабах расстояний (и времен), которые свойственны многим типичным астрономическим явлениям, но оказывается непригодной на микроскопических масштабах пространства (и времени). Центральный принцип гладкой и слабо искривленной геометрии соблюдается в большом масштабе, но нарушается под действием квантовых флуктуации при переходе к микроскопическим масштабам.

Основные принципы общей теории относительности и квантовой механики позволяют рассчитать примерный масштаб расстояний, при переходе к которому становятся очевидными разрушительные явления, показанные на рис. 5.1. Малость постоянной Планка, которая управляет интенсивностью квантовых эффектов, и слабость константы гравитационного взаимодействия приводят к тому, что планковская длина, куда входят обе этих величины, имеет малость, которая превосходит всякое воображение: одна миллионная от одной миллиардной от миллиардной от миллиардной доли сантиметра (10−33).[43] Таким образом, пятый уровень на рис. 5.1 схематически изображает структуру Вселенной в ультрамикроскопическом, субпланковском масштабе расстояний. Чтобы дать представление о масштабах, приведем такую иллюстрацию: если мы увеличим атом до размеров Вселенной, то планковская длина станет равной высоте среднего дерева. Итак, мы видим, что несовместимость общей теории относительности и квантовой механики проявляется только в очень глубоко запрятанном королевстве Вселенной. У читателя может возникнуть вопрос, стоит ли вообще беспокоиться по этому поводу. Мнение физического сообщества по этому вопросу отнюдь не является единым. Есть физики, которые признают существование проблемы, но предпочитают применять квантовую механику и общую теорию относительности для решения таких задач, в которых типичные расстояния намного превосходят планковскую длину. Есть, однако, и другие ученые, которые глубоко обеспокоены тем фактом, что два фундаментальных столпа, на которых держится здание современной физики, в своей основе принципиально несовместимы, и неважно, что эта несовместимость проявляется только на ультрамикроскопическом масштабе расстояний. Несовместимость, говорят они, указывает на существенный изъян в нашем понимании физического мира. Это мнение основывается на недоказуемой, но глубоко прочувствованной точке зрения, согласно которой понимание Вселенной на ее самом глубоком и наиболее элементарном уровне может дать нам ее логически непротиворечивое описание, все детали которого будут находиться в гармоничном единстве. И уж точно большинство физиков, независимо от того, какое значение это противоречие имеет для их собственных исследований, согласятся с тем, что основа наших самых глубоких теоретических представлений о Вселенной не должна представлять собой математически противоречивое лоскутное одеяло, скроенное из двух мощных, но конфликтующих теорий.

Физики неоднократно предпринимали попытки модифицировать общую теорию относительности и квантовую механику, чтобы разрешить это противоречие, однако эти попытки, среди которых были очень дерзкие и остроумные, терпели провал за провалом.

Так продолжалось до создания теории суперструн.[44]