"Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)" - читать интересную книгу автора (Грин Брайан)Глава 3. Об искривлениях и волнистой рябиВ специальной теории относительности Эйнштейн разрешил конфликт между накопленными за века интуитивными представлениями о движении и постоянством скорости света. Вкратце его выводы состояли в том, что наша интуиция имеет изъяны — она срабатывает при скоростях, которые обычно чрезвычайно малы по сравнению со скоростью света и поэтому скрывают истинную суть пространства и времени. Специальная теория относительности раскрыла их природу и показала, что она радикально отличается от существовавших ранее представлений. Однако переосмысление понятий пространства и времени оказалось нелегким делом. Эйнштейн вскоре осознал, что одно из многочисленных следствий специальной теории относительности является особенно глубоким: утверждение, что ничто не может превысить скорость света, оказалось несовместимым со всеми уважаемой ньютоновской теорией всемирного тяготения, сформулированной во второй половине XVII в. Таким образом, разрешив одно противоречие, специальная теория относительности породила другое. После десятилетия интенсивных, иногда мучительных исследований, Эйнштейн разрешил эту дилемму в общей теории относительности. В этой теории он еще раз совершил революцию в понимании свойств пространства и времени, показав, что они искривляются и деформируются, передавая действие силы тяжести. В 1642 г. в Линкольншире в Англии родился Исаак Ньютон, который изменил лицо науки, поставив всю мощь математики на службу физическим исследованиям. Интеллект Ньютона был столь всеобъемлющ, что, например, когда он однажды обнаружил, что не существует математического аппарата, требуемого для проводимых им исследований, он создал его. Прошло почти три столетия, прежде чем наш мир снова посетил гений сопоставимого масштаба. Ньютону мы обязаны многими глубокими проникновениями в сущность мироздания. Для нас первостепенное значение будет иметь его теория всемирного тяготения. Сила тяжести везде вокруг нас в повседневной жизни. Она удерживает нас и все окружающие тела на поверхности Земли, не позволяет воздуху, которым мы дышим, ускользнуть в космическое пространство, удерживает Луну на орбите вокруг Земли, а Землю — на орбите вокруг Солнца. Сила тяжести диктует ритм космического танца, который неустанно и педантично исполняется миллиардами миллиардов обитателей Вселенной, от астероидов до планет, от звезд до галактик. Более трех столетий авторитет Ньютона заставлял нас принимать на веру, что одна только сила тяготения отвечает за все разнообразие земных и внеземных событий. Однако до Ньютона не было понимания того, что падение яблока с дерева есть проявление того же закона, который удерживает планеты на орбитах вокруг Солнца. Сделав отважный шаг в сторону гегемонии науки, Ньютон объединил физические принципы, управляющие Землей и небесами, и объявил силу тяжести невидимой рукой, действующей в обеих сферах. Ньютоновскую концепцию тяготения можно было бы назвать великим уравнителем. Ньютон объявил, что абсолютно все оказывает воздействие на абсолютно все во Вселенной. Это воздействие представляет собой силу тяжести, которая является силой притяжения. Независимо от физической структуры, Ньютон не просто дал это качественное описание, он сделал больше, сформулировав уравнения, количественно описывающие силу тяжести, действующую между двумя телами. Конкретно, эти уравнения утверждают, что сила тяготения между двумя телами пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Этот «закон тяготения» может быть использован для предсказания движения планет и комет вокруг Солнца, Луны вокруг Земли и ракет, отправляющихся для исследования планет, а также для решения более приземленных задач — расчета траектории полета мячика или прыгуна с трамплина, крутящего сальто над бассейном. Согласие между предсказаниями и результатами наблюдений за фактическим движением тел является поразительным. Этот успех обеспечивал теории Ньютона безоговорочную поддержку вплоть до первой половины XX в. Однако открытие Эйнштейном специальной теории относительности выдвинуло проблемы, ставшие непреодолимым препятствием для теории Ньютона. Главной особенностью специальной теории относительности является существование абсолютного барьера для скорости, устанавливаемого скоростью света. Важно понимать, что этот предел относится не только к материальным телам, но также к сигналам и воздействиям любого рода. Не существует способа передать информацию или возмущение из одного места в другое со скоростью, превышающей скорость света. Конечно, в природе есть масса способов распространения возмущений со скоростью, Здесь и лежит камень преткновения. В теории тяготения Ньютона одно тело притягивает другое с силой, которая зависит только от масс этих тел и расстояния между ними. Эта сила никак не зависит от того, насколько долго тела находились рядом друг с другом. Это означает, что если их массы или расстояния между ними изменятся, то тела, согласно Ньютону, Этот вывод находится в прямом противоречии со специальной теорией относительности, поскольку последняя уверяет, что никакая информация не может быть передана со скоростью, превышающей скорость света. Мгновенное распространение тяготения в максимально возможной степени нарушает это принцип. Таким образом, в начале XX в. Эйнштейн осознал, что невероятно успешная теория тяготения Ньютона находится в противоречии со специальной теорией относительности. Уверенный в истинности специальной теории относительности, Эйнштейн, невзирая на огромное количество экспериментальных данных, подтверждающих теорию Ньютона, стал работать над новой теорией гравитации, которая была бы совместима со специальной теорией относительности. Это, в конечном счете, привело его к открытию общей теории относительности, в которой характер пространства и времени вновь претерпел поразительные изменения. Еще до открытия специальной теории относительности был ясен один существенный недостаток ньютоновской теории тяготения. Хотя теория чрезвычайно точно предсказывала движение тел под действием силы тяготения, она ничего не говорила о том, что «…непостижимо, чтобы неодушевленная, грубая материя могла без посредства чего-либо нематериального действовать и влиять на другую материю без взаимного соприкосновения, как это должно бы происходить, если бы тяготение в смысле Эпикура было существенным и врожденным в материи. Предполагать, что тяготение является существенным, неразрывным и врожденным свойством материи, так что тело может действовать на другое на любом расстоянии в пустом пространстве, без посредства чего-либо передавая действие и силу, — это, по-моему, такой абсурд, который немыслим ни для кого, умеющего достаточно разбираться в философских предметах. Тяготение должно вызываться агентом, постоянно действующим по определенными законам. Является ли, однако, этот агент материальным или нематериальным, решать это я предоставил моим читателям».[15] Это говорит о том, что Ньютон принимал существование тяготения, и разрабатывал уравнения, которые с высокой точностью описывают его действие, но никогда не предлагал никакого механизма, объясняющего, как оно работает. Он оставил миру «руководство пользователя» по гравитации с описанием того, как ее «использовать». Физики, астрономы и инженеры успешно применяли эти инструкции для прокладки курса ракет к Луне, Марсу и другим планетам Солнечной систем, для прогноза солнечных и лунных затмений, для предсказания движения комет и т.п. Но внутренний механизм — содержимое «черного ящика» гравитации — Ньютон оставил под покровом тайны. Когда вы пользуетесь плеером для компакт-дисков или персональным компьютером, вы обычно находитесь в таком же состоянии неведения об их внутреннем устройстве. Коль скоро вы знаете, как обращаться с исправным устройством, ни вам, ни кому-либо другому не требуется знать, В 1907 г., обдумывая эти вопросы за своим столом в патентном бюро швейцарского города Берна, Эйнштейн сумел нащупать центральную идею, которая, после ряда успехов и неудач, в конечном счете привела его к радикально обновленной теории тяготения. Предложенный Эйнштейном подход не просто восполнил пробелы в ньютоновской теории, но совершенно изменил наши представления о тяготении, и, что очень важно, оказался полностью совместимым со специальной теорией относительности. Подход, предложенный Эйнштейном, имеет отношение к вопросу, который беспокоил нас на всем протяжении главы 2. Там мы интересовались, как выглядит мир для двух наблюдателей, двигающихся относительно друг друга с постоянной скоростью. Тщательно сравнивая точки зрения этих двух наблюдателей, мы получили ряд удивительных выводов о сущности пространства и времени. А что можно сказать о наблюдателях, находящихся в состоянии «Самая счастливая идея» Эйнштейна объясняет, как сделать это. Чтобы понять ее, вообразим, что сейчас 2050 г. и вы являетесь главным экспертом ФБР по взрывчатым веществам. К вам обращаются с отчаянной мольбой срочно исследовать объект, который, по-видимому, является бомбой изощренной конструкции, заложенной в самом центре Вашингтона. Поспешив на место действия и осмотрев бомбу, вы видите, что сбылись ваши самые худшие предчувствия — бомба является атомной и имеет такую мощность, что даже если поместить ее глубоко под землю или на дно океана, последствия от взрыва будут опустошительными. После внимательного изучения детонирующего устройства вы видите, что обезвредить его невозможно и, более того, оно содержит защиту нового типа. Бомба смонтирована на весах. Как только показания весов изменятся более чем на 50% от того значения, которое они показывают сейчас, бомба взорвется. Изучив часовой механизм, вы видите, что в вашем распоряжении осталась всего неделя. От ваших действий зависит судьба миллионов людей — что же делать? Итак, смирившись с тем, что на земле и под землей нет безопасного места, где можно было бы взорвать бомбу, вы приходите к выводу, что остается только один выход: необходимо запустить ее в космос, где взрыв не причинит ущерба никому. Вы высказываете эту идею на совещании вашей команды в ФБР, и почти немедленно молодой сотрудник перечеркивает этот план. «В вашем предложении есть серьезный изъян, — говорит ваш ассистент Исаак. — Когда устройство будет удаляться от Земли, его вес начнет уменьшаться, поскольку гравитационное притяжение со стороны Земли будет ослабевать. Это означает, что показания весов внутри устройства уменьшатся, что приведет к детонации задолго до того, как бомба удалится на безопасное расстояние». Прежде чем вы успеваете полностью осмыслить это возражение, в разговор вмешивается другой молодой человек. «На самом деле здесь есть еще одна проблема, которую нам следует обсудить, — заявляет ваш другой ассистент Альберт. — Она столь же важна, как та, на которую указал Исаак, но является более тонкой, поэтому следите внимательно за моим объяснением». Желая взять минуту на размышление, чтобы обдумать возражение Исаака, вы пытаетесь отмахнуться от Альберта, но если уж он начал говорить, остановить его невозможно. «Для того чтобы запустить устройство в открытый космос, мы должны поместить его на ракету. Чтобы улететь в космическое пространство, ракета Вы благодарите Альберта за его комментарий, но мысленно откладываете его в сторону, поскольку по своим последствиям оно совпадает с замечанием Исаака, и безрадостно констатируете, что для того, чтобы убить идею, достаточно одного выстрела, и наблюдение Исаака, которое, несомненно, является правильным, уже сделало это. Без особой надежды вы спрашиваете, есть ли еще идеи. В этот момент Альберта посещает озарение. «Хотя, взвесив все еще раз, — продолжает он, — ваша идея вовсе не кажется мне безнадежной. Замечание Исаака о том, что сила тяжести уменьшается при подъеме в космическое пространство, означает, что показания весов будут Предложение Альберта начинает постепенно до вас доходить. «Иными словами — говорите вы, — ускорение может быть заменой тяготения. Мы можем имитировать действие силы тяжести правильно подобранным ускоренным движением». «Совершенно верно», — подтверждает Альберт. «Итак, — продолжаете вы, — мы можем запустить бомбу в космос и, соответствующим образом регулируя ускорение ракеты, гарантировать, что показания весов не изменятся и бомба не взорвется до тех пор, пока не удалится на безопасное расстояние от Земли». Таким образом, если вы заставите гравитацию и ускорение играть друг против друга, используя для этого возможности ракетной техники XXI в., то сможете избежать катастрофы. Осознание глубокой связи между гравитацией и ускоренным движением представляет собой главное озарение, снизошедшее на Эйнштейна в один счастливый день в патентном бюро Берна. Хотя эксперимент с бомбой уже высветил суть этой идеи, она заслуживает того, чтобы перефразировать ее в терминах, использованных в главе 2. Для этого вспомним, что если мы находимся в закрытом вагоне, не имеющем окон и не испытывающем ускорения, то не существует способа, с помощью которого мы могли бы определить скорость своего движения. Купе внутри будет продолжать выглядеть совершенно одинаково, и любые эксперименты дадут вам тождественные результаты независимо от скорости движения. Более того, не имея внешних ориентиров для сравнения, вы даже не сможете определить, движетесь ли вы вообще. С другой стороны, если вы ускоряетесь, то даже если доступная вам область ограничена внутренностью купе, вы Описание, приведенное выше, показывает, что общая теория относительности завершает работу, начатую специальной теорией относительности. Используя принцип относительности, специальная теория относительности провозглашает равноправие точек зрения наблюдателей: законы физики проявляются одинаковым образом для всех наблюдателей, находящихся в состоянии равномерного движения. Но это равноправие на самом деле является ограниченным, поскольку из него исключается огромное число точек зрения других наблюдателей, находящихся в состоянии ускоренного движения. Прозрение, пришедшее к Эйнштейну в 1907 г., показывает, как охватить Эта глубокая связь между гравитацией и ускоренным движением, несомненно, представляет собой блестящую догадку, но почему она сделала Эйнштейна столь счастливым? Причина, попросту говоря, состоит в том, что гравитация — загадочное явление. Это грандиозная сила, пронизывающая жизнь космоса, но она ускользающе непонятна. С другой стороны, ускоренное движение, хотя и является несколько более сложным, чем равномерное, является конкретным и вполне материальным. Эйнштейн понял, что, благодаря взаимосвязи между этими явлениями, он может использовать понимание ускоренного движения в качестве могучего инструмента для достижения такого же понимания гравитации. Претворить эту стратегию в жизнь было нелегко даже для такого гения, как Эйнштейн, но, в конечном счете, этот подход принес свои плоды в виде общей теории относительности. Чтобы достичь этого, Эйнштейну пришлось выковать второе звено цепи, объединяющей гравитацию и ускоренное движение, — Эйнштейн работал над проблемой гравитации с предельной, часто чрезмерной интенсивностью. Примерно через пять лет после счастливого озарения в бернском патентном бюро, он писал физику Арнольду Зоммерфельду: «Сейчас я работаю исключительно над проблемой гравитации… одно могу сказать определенно — никогда в моей жизни я не изнурял себя так, как сейчас… по сравнению с этой проблемой первоначальная (т. е. специальная) теория относительности кажется детской забавой».[17] Следующий ключевой прорыв, касающийся простого, но неочевидного следствия применения специальной теории относительности для установления связи между гравитацией и ускоренным движением, был сделан, по-видимому, в 1912 г. Чтобы понять этот шаг в исследованиях Эйнштейна, проще всего обратиться (так, вероятно, поступил и Эйнштейн) к конкретному примеру ускоренного движения.[18] Вспомним, что объект считается ускоренно движущимся, если он изменяет скорость или направление своего движения. Для простоты ограничимся ускоренным движением, в котором скорость остается постоянной, а изменяется только направление движения тела. Конкретно рассмотрим движение по кругу, которое можно увидеть на аттракционе Теперь, используя ускоренное движение во вращающемся аттракционе для имитации действия силы тяжести, можно, следуя Эйнштейну, посмотреть, как выглядят пространство и время для тех, кто находится на круге. Его рассуждения в приложении к нашей ситуации были бы такими. Мы, неподвижные наблюдатели, легко можем измерить длину окружности и радиус вращающегося круга. Например, чтобы измерить длину окружности, мы будем аккуратно прикладывать рулетку к ободу вращающегося круга; для измерения радиуса мы будем также аккуратно перемещать рулетку от оси вращения к внешнему краю круга. Как можно предположить, основываясь на школьном курсе геометрии, отношение эти двух величин будет равно 2π (около 6,28), в точности таким же, как для окружности, нарисованной на плоском листе бумаги. А как это будет выглядеть с точки зрения того, кто катается на этом аттракционе? Чтобы узнать это, мы попросили Слима и Джима, которые как раз катаются на этом аттракционе, выполнить для нас несколько измерений. Мы бросили одну из наших рулеток Слиму, который отправился измерять длину окружности, а другую — Джиму, который будет измерять радиус. Чтобы увидеть все наилучшим образом, взглянем на круг с высоты птичьего полета, как показано на рис. 3.1. Мы снабдили снимок стрелками, показывающими мгновенное направление движения в каждой точке. Как только Слим начинает измерять длину окружности, нам, из положения сверху, сразу становится понятно, что он получит не то значение, которое получили мы. Когда он прикладывает рулетку к окружности, мы замечаем, что ее Рис. 3.1. Линейка Слима укорачивается, так как она прикладывается вдоль направления движения круга. Линейка же Джима лежит вдоль радиуса круга, перпендикулярно направлению движения, и поэтому ее длина не уменьшается. Это не что иное, как обсуждавшееся в главе 2 лоренцево сокращение, которое связано с тем, что длина тела представляется уменьшившейся в направлении его движения. Уменьшение длины рулетки означает, что мы должны будем уложить ее, совмещая начало с концом, Ну, а что насчет радиуса? Джим использует тот же метод определения радиуса, и нам, с высоты птичьего полета, видно, что он получит такое же значение, которое получили мы. Причина состоит в том, что его рулетка располагается не по мгновенному направлению движения круга (как было при измерении длины окружности). Она направлена под углом 90 градусов к направлению движения и поэтому Но теперь, рассчитав отношение длины окружности колеса к его радиусу, Слим и Джим получат число, которое будет превышать полученное нами значение 2π, поскольку у них длина окружности оказалась больше, а радиус остался тем же самым. Что за чудеса? Как может быть, чтобы для какой-нибудь фигуры в форме окружности нарушалось установленное еще древними греками правило, согласно которому для любой окружности это отношение в точности равно 2π? Вот объяснение Эйнштейна. Результат древних греков справедлив для окружностей, нарисованных на плоской поверхности. Но подобно тому, как кривые зеркала в парке развлечений искажают нормальную пространственную структуру вашего отражения, так и пространственная форма окружности исказится, если она будет нарисована на искривленной или деформированной поверхности: отношение длины окружности к радиусу для такой окружности, как правило, В качестве примера на рис. 3.2 приведены три окружности одинакового радиуса. Длины этих окружностей различны. Длина окружности Рис. 3.2. Окружность, нарисованная на поверхности сферы Длина окружности Итак, Эйнштейн понял, что установленные древними греками привычные пространственные геометрические отношения, которые верны для «плоских» пространственных фигур, таких, как окружность на плоском столе, В действительности, ускоренное движение приводит не только к искривлению пространства, но и к аналогичному искривлению времени. (Исторически Эйнштейн сначала сосредоточил внимание на кривизне времени, и только потом осознал важность кривизны пространства.)[20] То, что время также подвергается искривлению, неудивительно — в главе 2 мы уже видели, что специальная теория относительности провозглашает союз пространства и времени. Это слияние было подытожено поэтическими словами Минковского, который на лекции по специальной теории относительности в 1908 г. сказал: «Отныне пространство и время, рассматриваемые отдельно и независимо, обращаются в тени и только их соединение сохраняет самостоятельность».[21] Пользуясь более приземленным, но столь же вольным языком, можно сказать, что сплетая пространство и время в единую ткань пространства-времени, специальная теория относительности провозглашает: «То, что истинно для пространства, то истинно и для времени». Однако здесь возникает вопрос. Мы можем представить себе искривленное пространство, зная, как искривлена его форма, но что мы имеем в виду, говоря о кривизне времени? Для того чтобы нащупать ответ, еще раз посадим Слима и Джима на аттракцион и попросим их провести следующий эксперимент. Слим будет стоять на краю радиального отрезка спиной к кругу, а Джим будет медленно ползти к нему вдоль этого радиуса от центра круга. Через каждые несколько метров Джим будет останавливаться, и они будут сравнивать показания своих часов. Что они увидят? Наблюдая со своей позиции с высоты птичьего полета, мы снова сможем предсказать ответ. Их часы будут расходиться в показаниях. Мы пришли к этому выводу потому, что увидели, что Слим и Джим движутся с разной скоростью — при движении на аттракционе чем дальше от центра вы находитесь, тем большее расстояние должны пройти для того, чтобы совершить один оборот и, следовательно, тем быстрее вы движетесь. Но, согласно специальной теории относительности, чем быстрее вы движетесь, тем медленнее идут ваши часы — из этого мы заключаем, что часы Слима будут идти медленнее, чем часы Джима. Далее, Слим и Джим обнаружат, что по мере того как Джим будет приближаться к Слиму, его часы будут идти все медленнее, и скорость их хода будет становиться такой же, как у часов Слима. Это отражает тот факт, что по мере приближения Джима к краю круга, его скорость приближается к скорости Слима. Мы приходим к выводу, что для наблюдателей на вращающемся круге, таких как Слим и Джим, скорость течения времени зависит от их положения — в нашем случае от их расстояния до центра круга. Это является иллюстрацией того, что мы понимаем под кривизной времени. Время искривлено, если скорость его хода изменяется от одной точки к другой. Важно подчеркнуть, что Джим заметит кое-что еще, когда будет ползти вдоль радиуса. Он почувствует возрастающую силу, выталкивающую его с круга, поскольку не только скорость, но и ускорение увеличиваются по мере удаления от центра круга. Используя наш аттракцион, мы видим, что большее ускорение связано с более сильным замедлением хода часов, — т.е. большее ускорение приводит к более значительному искривлению времени. Эти наблюдения дали возможность Эйнштейну сделать заключительный шаг. Поскольку он уже показал, что гравитацию и ускоренное движение нельзя по существу различить, и поскольку, как он показал теперь, ускоренное движение связано с искривлением пространства и времени, он сделал следующее предположение о внутреннем содержании «черного ящика» гравитации, механизме, с помощью которого действует гравитация. Согласно Эйнштейну, гравитация Чтобы почувствовать, в чем суть нового представления о гравитации, рассмотрим типичную ситуацию, в которой планета типа нашей Земли вращается вокруг звезды, похожей на наше Солнце. В ньютоновской теории гравитации Солнце удерживает Землю на некоей неопределяемой «привязи», которая каким-то образом мгновенно преодолевает огромные расстояния в пространстве и захватывает Землю (аналогичным образом и Земля захватывает Солнце). Эйнштейн предложил новую концепцию того, что происходит. Нам будет удобнее обсуждать подход Эйнштейна, имея конкретную наглядную модель пространства-времени, которой было бы удобно манипулировать. Для этого сделаем два упрощения. Во-первых, на какое-то время забудем о времени и сконцентрируемся исключительно на наглядной модели пространства. Позже мы вновь включим время в наше обсуждение. Во-вторых, для того, чтобы иметь возможность рисовать модели и размешать рисунки на страницах этой книги, мы часто будем использовать двумерные аналоги трехмерного пространства. Большинство выводов, которые мы получим, работая с моделями более низких размерностей, непосредственно применимо к физической трехмерной среде, поэтому более простые модели представляют собой прекрасные средства для объяснения и обучения. Используя эти упрощения, мы изобразили на рис. 3.3 двумерную модель области нашей Вселенной. Рис. 3.3. Схематическое представление плоского пространства. Координатная сетка удобна для указания положения, точно так же, как сеть улиц позволяет описать местонахождение в городе. При задании адреса в городе, кроме положения на двумерной сетке улиц, указывается также положение по вертикали, например, указание этажа. Для облегчения визуального восприятия будем отбрасывать третье измерение в наших двумерных моделях. Эйнштейн высказал предположение, что в отсутствие материи и энергии пространство Массивное тело, подобно нашему Солнцу, а на самом деле любое тело, оказывает гравитационное воздействие на другие тела. В примере с бомбой террориста мы установили, что действие гравитационных сил неотличимо от действия ускоренного движения. Пример с аттракционом Рис. 3.4. Массивное тело, такое как Солнце, заставляет структуру пространства искривляться подобно тому, как деформируется резиновая пленка, если на нее положить шар для боулинга. Полезная и часто используемая аналогия состоит в том, что структура пространства деформируется в присутствии массивных тел, таких как наше Солнце, подобно резиновой пленке, на которую положили шар для боулинга. Согласно этой радикальной гипотезе, пространство не является просто пассивной ареной событий во Вселенной; форма пространства изменяется под влиянием присутствующих в нем тел. Это искривление, в свою очередь, влияет на другие тела, движущиеся вблизи Солнца, которые теперь будут перемещаться по деформированному пространству. Используя аналогию с резиновой пленкой и шаром для боулинга, можно сказать, что если мы поместим на пленку шарик и придадим ему начальную скорость, его траектория будет зависеть от того, присутствует ли в центре пленки массивный шар для боулинга. Если шара для боулинга там нет, резиновая пленка будет плоской, и шарик будет двигаться по прямой. Если шар для боулинга присутствует, он будет искривлять пленку, и шарик будет двигаться по искривленной траектории. Если мы придадим шарику соответствующую скорость и направим его в соответствующем направлении, он будет совершать периодическое движение вокруг шара для боулинга (если игнорировать действие сил трения), т.е. фактически «выйдет на орбиту». Наш язык способствует применению этой аналогии к гравитации. Солнце, подобно шару для боулинга, искривляет структуру окружающего его пространства, а движение Земли, как и движение шарика, определяется этой кривизной. Если скорость и направление движения Земли имеют подходящие значения, она, подобно шарику, будет вращаться вокруг Солнца. Это влияние кривизны на движение Земли, показанное на рис. 3.5, и есть то, что мы обычно называем гравитационным воздействием Солнца. Рис. 3.5. Земля остается на орбите вокруг Солнца потому, что катится по ложбине в искривленной структуре пространства. Говоря более точно, она следует «линии наименьшего сопротивления» в деформированной окрестности Солнца. Разница состоит в том, что в отличие от Ньютона Эйнштейн указал Такая картина позволяет по-новому взглянуть на две важные особенности гравитации. Во-первых, чем массивнее будет шар для боулинга, тем сильнее он будет деформировать пленку. Так же и в эйнштейновской модели гравитации — чем массивнее объект, тем более сильно он искривляет окружающее пространство. Это означает, в точном соответствии с экспериментальными фактами, что чем массивнее объект, тем сильнее его гравитационное воздействие на другие тела. Во-вторых, так же как деформация резиновой пленки, вызванная шаром для боулинга, становится все меньше по мере удаления от шара, так и кривизна пространства, созданная присутствием массивного тела, уменьшается при увеличении расстояния от него. Это опять же согласуется с нашим пониманием гравитации, которая ослабевает при увеличении расстояния между объектами. Здесь важно помнить, что шарик сам искривляет резиновую пленку, хотя и слабо. Земля, которая сама является массивным телом, тоже искривляет пространство, хотя и в гораздо меньшей степени, чем Солнце. Это объясняет с позиций общей теории относительности то, почему Земля удерживает на орбите Луну, а также не дает нам с вами улететь в космическое пространство. Когда парашютист совершает свой прыжок, он скользит вниз по впадине в пространстве, образовавшейся под действием массы Земли. Более того, каждый из нас, как и любое массивное тело, также искривляет пространство вблизи своего тела, хотя из-за относительной малости массы человеческого тела эти впадины очень малы. В заключение заметим, что Эйнштейн был полностью согласен с утверждением Ньютона: «Гравитация должна передаваться каким-то посредником», и принял вызов Ньютона, который оставил определение этого посредника «на усмотрение моих читателей». Согласно Эйнштейну, посредником гравитации является структура пространства. Аналогия с резиновой пленкой и шаром для боулинга полезна, поскольку она дает наглядный образ, с помощью которого можно реально понять, что означает искривление пространственной структуры Вселенной. Физики часто используют эту и другие подобные ей аналогии для выработки интуитивных представлений о гравитации и кривизне пространства. Однако, несмотря на полезность, аналогия с резиновой пленкой и шаром для боулинга несовершенна, и мы хотим для полной ясности привлечь внимание читателя к некоторым ее недостаткам. Во-первых, когда Солнце вызывает искривление структуры пространства, это не связано с тем, что оно «тянет пространство вниз» в результате действия силы тяжести, как это происходит в случае с шаром для боулинга. В случае с Солнцем здесь нет других объектов, которые «тянут пространство». Напротив, как учит Эйнштейн, Рис. 3.6. Пример искривленного трехмерного пространства, окружающего Солнце. Тело, подобное Земле, движется Третьим недостатком этой аналогии является то, что мы игнорировали временное измерение. Мы сделали это для большей наглядности: хотя специальная теория относительности и провозглашает, что мы должны рассматривать временное измерение наравне с пространственными, «увидеть» время значительно сложнее. Однако, как видно из примера с аттракционом Если вы будете помнить об этих трех важных замечаниях, то использование наглядной модели, состоящей из резиновой пленки и шара для боулинга, в качестве интуитивного обобщения предложенного Эйнштейном нового взгляда на гравитацию, является вполне приемлемым. Введя пространство и время в качестве динамических объектов, Эйнштейн создал ясный концептуальный образ того, как устроено тяготение. Главная проблема, однако, состоит в том, разрешает ли новая формулировка гравитационного взаимодействия то противоречие со специальной теорией относительности, которым страдала теория тяготения Ньютона. Да, разрешает. И снова аналогия с резиновой пленкой поможет понять основную идею. Представим себе, что у нас есть шарик, который катится по прямой линии по поверхности плоской пленки в отсутствие шара для боулинга. Если поместить шар для боулинга на пленку, движение шарика изменится, но не То же самое справедливо и для структуры пространства. При отсутствии масс пространство является плоским, и небольшое тело будет находиться в состоянии безмятежного покоя или двигаться с постоянной скоростью. Когда на сцене появляется большая масса, пространство искривляется, — но, как и в случае с пленкой, деформация не будет мгновенной. Она будет распространяться в стороны от массивного тела и, в конце концов, придет в установившееся состояние, передающее гравитационное притяжение нового тела. В нашей аналогии возмущение распространяется по резиновой пленке со скоростью, зависящей от характеристик материала, из которого изготовлена пленка. Эйнштейн сумел рассчитать скорость, с которой распространяется возмущение структуры Вселенной в реальных условиях. Оказалось, что она Картинки, которые мы видим на рис. 3.2, 3.4 и 3.6, иллюстрируют сущность того, что означает «искривленное пространство». Кривизна деформирует форму пространства. Физики пытались создать аналогичные образы для того, чтобы продемонстрировать смысл «искривленного времени», но они оказались гораздо сложнее для восприятия, поэтому мы не будем их здесь приводить. Вместо этого последуем примеру Слима и Джима из аттракциона Для этого снова посетим Джорджа и Грейс, которые находятся уже не во мраке пустого космического пространства, а где-то на окраине Солнечной системы. Оба они все еще носят на своих скафандрах большие цифровые часы, которые мы когда-то синхронизировали. Для простоты не станем учитывать влияние планет и будем рассматривать только гравитационное поле Солнца. Далее, представим себе, что космический корабль, зависший около Джорджа и Грейс, размотал длинный трос, конец которого достигает окрестностей солнечной поверхности. С помощью этого троса Джордж медленно перебирается ближе к Солнцу. По пути он периодически останавливается, чтобы сравнить темп хода времени на его часах и на часах Грейс. Искривление времени, предсказываемое общей теорией относительности Эйнштейна, означает, что по мере того, как он будет испытывать все более сильное воздействие гравитационного поля, его часы будут все больше отставать от часов Грейс. Иными словами, чем ближе он будет к Солнцу, тем медленнее будут идти его часы. Именно в этом смысле гравитация деформирует не только пространство, но и время. Вы должны были заметить, что в отличие от случая, рассмотренного в главе 2, когда Джордж и Грейс находились в пустом пространстве, перемещаясь относительно друг друга с постоянной скоростью, сейчас между ними нет симметрии. Джордж, в отличие от Грейс, В гравитационном поле, подобном тому, которое существует на поверхности рядовой звезды вроде нашего Солнца, замедление темпа хода часов будет небольшим. Если Грейс находится на расстоянии миллиарда километров от Солнца, то когда Джордж будет в нескольких километрах от поверхности нашего светила, темп хода его часов составит примерно 99,9998% темпа хода часов Грейс. Такое замедление очень мало.[23] Однако если Джордж будет спускаться по тросу, который висит над поверхностью нейтронной звезды, масса которой примерно равна массе Солнца, а плотность вещества превышает солнечную примерно в миллион миллиардов раз, сильное гравитационное поле этой звезды замедлит темп хода его часов до 76% темпа хода часов Грейс. Еще более сильные гравитационные поля, подобные тем, которые имеют место на внешней поверхности черных дыр (они обсуждаются ниже), могут замедлить ход времени еще сильнее. Более сильные гравитационные поля вызывают более сильное искривление времени. Большинство из тех, кому приходится изучать общую теорию относительности, бывают очарованы ее эстетической привлекательностью. Путем замены холодного, механистического взгляда Ньютона на пространство, время и тяготение на динамическое и геометрическое описание, включающее искривленное пространство-время, Эйнштейн сумел «вплести» тяготение в фундаментальную структуру Вселенной. Перестав быть структурой, наложенной дополнительно, гравитация стала неотъемлемой частью Вселенной на ее наиболее фундаментальном уровне. Вдохнув жизнь в пространство и время, позволив им искривляться, деформироваться и покрываться рябью, мы получили то, что обычно называется тяготением. Если оставить в стороне эстетическое совершенство, конечным подтверждением справедливости физической теории является ее способность объяснять и точно предсказывать физические явления. Теория гравитации Ньютона блестяще выдерживала это испытание с момента ее появления в конце XVII в. и до начала XX столетия. Применительно к подбрасываемым в воздух мячам, телам, падающим с наклонных башен, кометам, кружащимся вокруг Солнца, или планетам, вращающимся по своим орбитам, теория Ньютона всегда давала чрезвычайно точное объяснение всем наблюдениям и предсказаниям, которые бесчисленное количество раз проверялись в самых разных условиях. Как мы уже подчеркивали, причины появления сомнений в этой необычайно успешной с экспериментальной точки зрения теории состояли в том, что согласно ей гравитационное взаимодействие передается мгновенно, а это противоречит специальной теории относительности. Эффекты специальной теории относительности, имея огромное значение для понимания пространства, времени и движения на самом фундаментальном уровне, остаются чрезвычайно малыми в мире малых скоростей, в котором мы обитаем. Аналогично, расхождения между общей теорией относительности Эйнштейна — теорией гравитации, совместимой со специальной теорией относительности, — и теорией тяготения Ньютона также чрезвычайно малы в большинстве обычных ситуаций. Это и хорошо, и плохо. Хорошо потому, что любая теория, претендующая на то, чтобы занять место теории тяготения Ньютона, должна полностью согласовываться с ней в тех областях, где теория Ньютона получила экспериментальное подтверждение. Плохо потому, что это затрудняет экспериментальный выбор между двумя теориями. Выявление различий между теориями Эйнштейна и Ньютона требует проведения чрезвычайно точных измерений в экспериментах, которые очень чувствительны к различиям этих двух теорий. Если вы бросите бейсбольный мячик, для предсказания места его приземления могут быть использованы и ньютоновская, и эйнштейновская теории гравитации. Ответы будут разными, но различия будут столь малы, что они лежат за пределами наших возможностей их экспериментального подтверждения. Требуются более тонкие эксперименты, и Эйнштейн предложил один из них.[24] Мы любуемся звездами по ночам, но они, конечно, остаются на небе и днем. В это время мы обычно не видим их, потому что их далекие, точечные огни затмеваются светом Солнца. Однако во время солнечных затмений Луна временно заслоняет часть света, идущего си Солнца, и удаленные звезды становятся видимыми и днем. Тем не менее, присутствие Солнца продолжает оказывать влияние на испущенный ими свет. Свет от некоторых отдаленных звезд на своем пути к Земле должен пройти вблизи Солнца. Общая теория относительности Эйнштейна утверждает, что Солнце искривляет пространство и время, и что эта деформация Угол, на который отклоняется луч света, несложно измерить. Отклонение траектории луча приводит к смещению 6 ноября 1919 г., после пяти месяцев анализа фотографий, сделанных во время затмения на о. Принсипе (а также фотографий того же затмения, сделанных в Собрале в Бразилии второй британской экспедицией, возглавляемой Чарльзом Дэвидсоном и Эндрю Кроммелином), на совместном заседании Королевского научного общества и Королевского астрономического общества было объявлено, что предсказания, сделанные Эйнштейном на основе общей теории относительности, подтвердились. За короткое время весть об этом успехе — революционном пересмотре ранее существовавших понятий пространства и времени — вышла далеко за пределы научного сообщества, сделав Эйнштейна знаменитым во всем мире. 7 ноября 1919 г. заголовок лондонской Таймс сообщал: «Революция в науке! Новая теория мироздания! Идеи Ньютона низвергнуты!».[25] Это было звездным часом Эйнштейна. За годы, прошедшие со времени этого эксперимента, подтверждение общей теории относительности, сделанное Эддингтоном, неоднократно подвергалось критическому анализу. Многочисленные сложности и тонкости, связанные с измерениями, затрудняют их воспроизведение и ставят под вопрос достоверность первоначальных результатов. Однако за последние 40 лет были выполнены разнообразные эксперименты с использованием последних достижений современной техники. Эти эксперименты предназначались для проверки различных аспектов общей теории относительности. Все предсказания общей теории относительности получили подтверждение. Сегодня не существует сомнений, что модель гравитации, предложенная Эйнштейном, не только совместима со специальной теорией относительности, но и дает более точное совпадение с экспериментальными данными, чем теория Ньютона. Если эффекты специальной теории относительности становятся наиболее очевидными при больших скоростях движения тел, то общая теория относительности выходит на сцену, когда тела имеют очень большую массу и вызывают сильное искривление пространства и времени. Рассмотрим два примера. Первым из них является открытие, сделанное во время Первой мировой войны немецким астрономом Карлом Шварцшильдом, когда он, находясь в 1916 г. на русском фронте, в перерывах между расчетом траекторий артиллерийских снарядов знакомился с достижениями Эйнштейна в области гравитации. Удивительно, что спустя всего несколько месяцев после того, как Эйнштейн нанес завершающие мазки на полотно общей теории относительности, Шварцшильд сумел, используя эту теорию, получить полную и точную картину того, как искривляются пространство и время в окрестности идеально сферической звезды. Шварцшильд послал полученные им результаты с русского фронта Эйнштейну, который по его поручению представил их Прусской академии. Помимо подтверждения и математически точного расчета искривления, которое мы схематически показали на рис. 3.5, работа Шварцшильда — известная в настоящее время под названием «решения Шварцшильда» — выявила одно поразительное следствие общей теории относительности. Было показано, что если масса звезды сосредоточена в пределах достаточно малой сферической области (когда отношение массы звезды к ее радиусу не превосходит некоторого критического значения), то результирующее искривление пространства-времени будет столь значительным, что Решение Шварцшильда иллюстрируется на рис. 3.7. Хотя черные дыры известны своей «прожорливостью», тела, которые проходят мимо них на безопасном расстоянии, отклоняются точно так же, как они отклонились бы под действием обычной звезды, и следуют дальше своей дорогой. Но тела любой природы, подошедшие слишком близко, ближе, чем на расстояние, которое называется Рис. 3.7. Черная дыра искривляет структуру окружающего пространства-времени настолько сильно, что любой объект, пересекающий ее «горизонт событий» — обозначенный черной окружностью — не может ускользнуть из ее гравитационной ловушки. Никто не знает в точности, что происходит в глубинах черных дыр. Если, например, вы подплываете к центру черной дыры ногами вперед, то при пересечении горизонта событий вы будете ощущать растущее чувство дискомфорта. Гравитационное притяжение черной дыры возрастет столь значительно, что оно будет притягивать ваши ноги гораздо сильнее, чем голову (ведь ноги будут несколько ближе к центру черной дыры, чем голова), настолько сильно, что сможет быстро разорвать ваше тело на куски. Если же вы будете благоразумнее в странствиях в окрестностях черной дыры и позаботитесь о том, чтобы не пересекать ее горизонт событий, то можно использовать черную дыру для замечательного трюка. Представим, например, что вы обнаружили черную дыру, масса которой в 1000 раз превышает массу Солнца, и спускаетесь на тросе, точно так же, как Джордж спускался на Солнце, до высоты 3 см над горизонтом событий. Как мы уже отмечали, гравитационные поля вызывают искривление времени, это означает, что ваше путешествие во времени замедлится. В действительности, поскольку черные дыры имеют столь сильные гравитационные поля, ход вашего времени замедлится Чтобы почувствовать всю грандиозность масштабов этих явлений, отметим, что звезда массой, равной массе Солнца, станет черной дырой, если ее радиус будет составлять не наблюдаемое значение (около 700 000 км), а всего лишь около 3 км. Вообразите, что все наше Солнце сжалось до размеров Манхэттена. Чайная ложка вещества такого сжатого Солнца будет весить столько же, сколько гора Эверест. Чтобы сделать черной дырой нашу Землю, мы должны сжать ее в шарик радиусом менее сантиметра. В течение долгого времени физики скептически относились к возможности существования таких экстремальных состояний материи, многие из них считали, что черные дыры являются всего лишь издержками разгулявшегося воображения перетрудившихся теоретиков. Однако в течение последнего десятилетия накопилось достаточно много наблюдательных данных, подтверждающих существование черных дыр. Конечно, поскольку они являются черными, их нельзя наблюдать непосредственно, исследуя небосвод с помощью телескопа. Вместо этого астрономы пытаются обнаружить черные дыры по аномальному поведению обычных излучающих свет звезд, расположенных поблизости от горизонтов событий черных дыр. Например, когда частицы пыли и газа из внешних слоев находящихся по соседству с черной дырой обычных звезд устремляются в направлении горизонта событий черной дыры, они разгоняются почти до световой скорости. При таких скоростях трение в газопылевом водовороте засасываемого вещества приводит к выделению огромного количества тепла, заставляющего газопылевую смесь светиться, излучая обычный видимый свет и рентгеновское излучение. Поскольку это излучение генерируется вне горизонта событий, оно может избежать попадания в черную дыру. Это излучение распространяется в пространстве, оно может непосредственно наблюдаться и изучаться. Общая теория относительности детально предсказывает характеристики такого рентгеновского излучения; наблюдение этих предсказанных характеристик дает убедительные, хотя и косвенные подтверждения существования черных дыр. Например, имеется все больше свидетельств в пользу того, что очень массивная черная дыра, масса которой в два с половиной миллиона раз превосходит массу нашего Солнца, расположена в центре нашей Галактики. Но даже эти прожорливые черные дыры бледнеют по сравнению с теми, которые, по-мнению астрономов, расположены в центрах рассеянных по всему космосу сияющих ошеломляюще ярким светом квазаров. Это черные дыры, массы которых в Шварцшильд умер всего через несколько месяцев после того, как нашел свое решение. Он умер от кожного заболевания, которым заразился на русском фронте. Ему было 42 года. Его трагически краткое знакомство с теорией гравитации Эйнштейна открыло одну из наиболее ярких и таинственных граней жизни Вселенной. Второй пример, который позволил общей теории относительности нарастить мускулы, относится к возникновению и эволюции всей Вселенной. Как мы уже видели, Эйнштейн показал, что пространство и время реагируют на присутствие массы и энергии. Эта деформация пространства-времени оказывает влияние на движение других космических тел, оказавшихся поблизости от образовавшегося искривления. Точная траектория движения этих тел зависит от их собственных массы и энергии, которые, в свою очередь, оказывают влияние на кривизну пространства-времени, влияющую на движение этих тел, и так до бесконечности. Используя уравнения общей теории относительности, основанные на достижениях в описании геометрии искривленного пространства, которых добился великий математик XIX в. Георг Бернхард Риман (подробнее мы расскажем о нем ниже), Эйнштейн сумел количественно описать взаимную эволюцию пространства, времени и материи. К его великому изумлению, применение этих уравнений не к изолированной системе (такой, как планета или комета, обращающаяся вокруг Солнца), а к Вселенной в целом, привело к поразительному выводу: Это было слишком даже для Эйнштейна. Такой вывод опрокидывал общепринятые интуитивные представления о сущности пространства и времени, сформировавшиеся в течение тысяч лет под влиянием повседневного опыта. Даже такой радикальный мыслитель не смог отказаться от представлений о вечно существующей и неизменной Вселенной. По этой причине Эйнштейн пересмотрел свои уравнения и модифицировал их, добавив дополнительный член, ставший известным как Если принять, что пространство Вселенной расширяется, приводя к увеличению расстояния между галактиками, переносимыми космическими потоками, можно мысленно обратить развитие Вселенной вспять по времени, чтобы исследовать ее происхождение. При таком обращении пространство Вселенной сокращается, и галактики становятся все ближе и ближе друг к другу. По мере того, как сокращающаяся Вселенная сжимает галактики, в ней, как в автоклаве, происходит резкое увеличение температуры, звезды разрушаются, и образуется раскаленная плазма из элементарных составляющих вещества. Дальнейшее сжатие сопровождается непрекращающимся ростом температуры, а также плотности первичной плазмы. Если мы представим, что часы отсчитали примерно пятнадцать миллиардов лет назад от современного состояния, известная нам Вселенная сократится до еще меньшего размера. Материя, из которой состоит Образ Большого взрыва как космической вспышки, извергнувшей материальное содержимое Вселенной, как шрапнель из разорвавшейся бомбы, полезен для восприятия, но он может ввести в заблуждение. Когда взрывается бомба, она взрывается в определенном месте В экспериментах, выполненных с использованием современной техники, не было обнаружено отклонений от предсказаний общей теории относительности. Только время сможет показать, позволит ли возрастающая точность экспериментов выявить какие-либо отклонения и, тем самым, показать, что эта теория также представляет собой лишь приближенное описание сущности мироздания. Систематическая проверка теорий со все более высокой степенью точности является, конечно, одним из путей развития науки, но это не единственный путь. На самом деле мы уже видели это: поиск новой теории гравитации был инициирован не экспериментальным опровержением теории Ньютона, а конфликтом между ньютоновской гравитацией и другой За последние полвека физики столкнулись с другим теоретическим противоречием, не уступающим противоречию между специальной теорией относительности и ньютоновской гравитацией. Выяснилось, что общая теория относительности, по-видимому, на фундаментальном уровне несовместима с другой чрезвычайно тщательно проверенной теорией — |
||||||||||||||||
|