"Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)" - читать интересную книгу автора (Грин Брайан)Глава 12. За рамками струн: в поисках M-теорииВ долгих поисках единой теории Эйнштейн размышлял о том, «мог ли Бог сотворить мир другим, оставляет ли какую-то свободу требование логической простоты».[113] Это замечание Эйнштейна предвосхищает точку зрения, которой сегодня придерживаются многие физики: если у нас есть окончательная теория природы, то одним из самых убедительных аргументов в пользу ее конкретной структуры является то, что теория не могла бы быть другой. Окончательная теория должна иметь тот вид, который она имеет, потому что она дает уникальную формулировку, в рамках которой можно объяснить Вселенную, не натыкаясь на внутренние или логические противоречия. В подобной теории должно постулироваться, что все вокруг устроено именно так потому, что оно Установление такой неизбежности в структуре Вселенной потребует долгого пути и вплотную приведет нас к разрешению глубочайших вопросов мироздания. Эти вопросы подчеркивают загадку: кто или что сделал выбор среди бессчетного числа вариантов? Неизбежность упраздняет эти вопросы путем отметания других возможностей. Неизбежность означает, что в действительности другого выбора нет. Неизбежность постулирует, что Вселенная не может быть иной. Как мы увидим в главе 14, нет причин, по которым Вселенная должна иметь такую жесткую конструкцию. Тем не менее, поиск этой жесткости законов природы лежит в основе программы объединения в современной физике. К концу 1980-х гг. теория струн, по мнению физиков, хотя и приблизилась к построению единой картины Вселенной, но не выдержала экзамен на «отлично». На то были две причины. Во-первых, как вскользь отмечено в главе 7, физики обнаружили, что существует Вторая причина отклонения от неизбежности более тонкая. Чтобы понять ее в полной мере, нужно признать, что все физические теории состоят из двух частей. Первая часть — это набор основных идей теории, выраженных, как правило, в виде математических уравнений. Вторая часть состоит из решений этих уравнений. Вообще говоря, одни уравнения допускают только единственное решение, а другие — более одного решения (возможно, много более). (Например, уравнение «2 умножить на некоторое число равно 10» имеет одно решение: 5. Однако уравнение «0 умножить на некоторое число равно 0» имеет бесконечно много решений, так как Эти отклонения от неизбежности могли бы считаться досадным фундаментальным недостатком теории струн. Но исследования, начавшиеся в середине 1990-х гг., дали надежду на то, что этот недостаток есть просто следствие того, С 1995 г. (начало второй революции в теории суперструн) растет число свидетельств в пользу того, что точные уравнения, вид которых до сих пор находится за пределами наших познаний, могут разрешить эти проблемы и, тем самым, придадут теории струн статус неизбежности. К удовлетворению большинства занимающихся теорией струн физиков уже доказано, что точные уравнения, когда их вид будет ясен, вскроют связь между всеми пятью теориями струн. Как лучи морской звезды, все они являются частями одного организма, который в настоящее время пристально исследуется теоретиками. Физики уверены, что вместо пяти различных теорий должна существовать Чтобы объяснить эти идеи, нам придется воспользоваться рядом самых сложных и самых современных результатов теории струн. Необходимо понять суть приближений, используемых в теории струн, а также присущие им ограничения. Нам нужно ближе познакомиться с искусными методами, известными под собирательным названием Тем не менее есть множество, казалось бы, не связанных элементов, которые нам придется исследовать и соединить воедино, поэтому в данной главе особенно просто не разглядеть за деревьями леса. Поэтому, если обсуждение в этой главе начнет казаться слишком запутанным и возникнет желание пропустить ее и перейти к черным дырам (главе 13) или космологии (главе 14), мы вам рекомендуем все-таки вернуться к следующему параграфу, где сведены вместе ключевые идеи второй революции в теории суперструн. Важнейший результат, полученный в ходе второй революции в теории суперструн, показан на рис. 12.1 и 12.2. На рис. 12.1 изображена ситуация до того, как стало возможным (частично) выйти за рамки приближенных методов, традиционно используемых физиками для исследований в теории струн. Однако, как показано на рис. 12.2, в свете последних результатов видно, что подобно лучикам морской звезды все теории струн рассматриваются сейчас как части единого целого. (К концу этой главы, на самом деле, станет ясно, что даже и шестая теория — шестой лучик звезды — будет вписана в это объединение.)
Рис. 12.1. Многие годы физики, работавшие с пятью теориями струн, думали, что они исследуют совершенно различные теории.
Рис. 12.2. Результаты, полученные в ходе второй революции в теории суперструн, показали, что все пять теорий в действительности являются частью единого формализма, условно названного M-теорией. Этот единый формализм по причинам, которые станут ясными в дальнейшем, условно назвали M-теорией. Рис. 12.2 иллюстрирует эпохальное достижение в поисках окончательной теории. Тропы исследований в теории струн, которые, казалось, ведут в разные стороны, слились в одну широкую дорогу — единую и всеохватывающую теорию, которая вполне может оказаться искомой «теорией всего». Хотя предстоит проделать еще много работы, две основные характеристики M-теории уже установлены физиками. Во-первых, M-теория рассматривает одиннадцать измерений (десять пространственных и одно временное). Подобно тому, как Калуца внезапно обнаружил, что одно дополнительное пространственное измерение можно использовать для объединения гравитации с электромагнетизмом, теоретики осознали, что одно дополнительное пространственное измерение в теории струн (помимо оставшихся девяти пространственных и одного временного, обсуждавшихся в предыдущих главах) позволяет осуществить более чем удовлетворительный синтез всех пяти вариантов теории струн. Кроме того, это дополнительное измерение возникает не из воздуха: теоретики обнаружили, что выводы о существовании одного временного и девяти пространственных измерений, сделанные в 1970-х и 1980-х гг., являются Второе установленное свойство M-теории состоит в том, что она, кроме колеблющихся струн, включает и другие объекты: колеблющиеся Ограничения методов, с помощью которых физики пытались анализировать теорию струн, связаны с использованием Предположим, что в один прекрасный день машина вашего знакомого начинает барахлить, и он обращается в мастерскую, чтобы ее проверить. Осмотрев машину, механик говорит, что дело плохо. Нужен новый блок двигателя, и обычно ремонт в таких случаях обходится примерно в $900 (включая стоимость деталей). Это примерная оценка, а более точная стоимость выяснится в ходе ремонта. Проходит несколько дней, и, проведя дополнительные проверки, механик сообщает более точную стоимость $950. Он объясняет, что необходим еще и новый регулятор: это увеличит общую стоимость ремонта примерно на $50. Наконец, когда машина отремонтирована, вашему знакомому выставляется счет на $987,93. В мастерской объясняют, что в него входят $950 за блок двигателя и регулятор, $27 за ремень вентилятора, $10 за кабель аккумулятора и $0,93 за изолированный болт. Примерная первоначальная стоимость $900 уточнялась с учетом все более мелких деталей. На языке физики эти детали рассматриваются как возмущения исходной оценки. При правильном использовании теории возмущений первоначальная оценка будет достаточно близка к окончательному ответу, и после учета мелких подробностей, опущенных в исходной оценке, поправка будет невелика. Но иногда при оплате счета выясняется, что конечная сумма ужасающе расходится с начальной оценкой. И хотя в этот момент в голову, возможно, приходят совсем другие слова, в математике это называется Классический пример использования теории возмущений дает изучение движения Земли в Солнечной системе. На таких больших пространственных масштабах можно учитывать только гравитационное взаимодействие, однако, если не делать дополнительных приближений, возникающие уравнения будут крайне сложны. Вспомним, что и по Ньютону, и по Эйнштейну все тела оказывают гравитационное воздействие на все другие тела, так что попытка точной формулировки сразу приводит к математически неразрешимой задаче о «гравитационном перетягивании каната» Землей, Солнцем, другими планетами и, если по-честному, всеми другими небесными телами. Как нетрудно сообразить, определить точное движение Земли с учетом всех влияний невозможно. На самом деле, уже в случае трех небесных тел уравнения становятся настолько сложными, что никто не сумел полностью решить их.[115] Тем не менее в рамках теории возмущений Этот пример демонстрирует, насколько при использовании теории возмущений важно определить, является ли предполагаемое первое приближение Физические процессы в теории струн порождаются фундаментальными взаимодействиями между колеблющимися струнами. Как обсуждалось в главе 6[116], в эти взаимодействия входят распады и слияния струнных петель, подобные тем, которые изображены на рис. 6.7 и продублированы для удобства читателя на рис. 12.3. Занимающиеся струнами теоретики показали, как схематическому изображению на рис. 12.3 поставить в соответствие точную математическую формулу, описывающую влияние каждой из сталкивающихся струн на движение другой. (Эта формула имеет разный вид в пяти теориях струн, но мы на время будем пренебрегать такими тонкостями.)
Рис. 12.3. Струны взаимодействуют, соединяясь и разделяясь. Если бы не было квантовой теории, на этой формуле и заканчивалось бы изучение взаимодействия струн. Но в силу соотношения неопределенностей возникает микроскопический хаос, в котором происходит непрерывное рождение пар струна / антиструна (двух струн с противоположными колебательными модами) за счет одолженной у Вселенной энергии, и быстрая аннигиляция этих пар, в результате которой одолженная энергия возвращается Вселенной. Такие пары струн, рожденные из квантового хаоса, живущие за счет одолженной энергии и, следовательно, обязанные быстро слиться в одну петлю, называют Схематически этот процесс изображен на рис. 12.4. Две исходные струны сливаются вместе в точке а), образуя единую петлю. Некоторое время эта петля движется, но в точке б) квантовые флуктуации приводят к рождению виртуальной пары струн, которая далее аннигилирует в точке в), и в результате снова получается одна петля.
Рис. 12.4. Квантовый хаос приводит к рождению пары струна / антиструна (б) и ее уничтожению (в), что усложняет взаимодействие. Наконец, в точке г) эта струна отдает энергию, распадаясь на пару струн, которые разлетаются в разных направлениях. Из-за наличия одной петли в центре рис. 12.4 физики называют это «однопетлевым» процессом. Как и для взаимодействия, изображенного на рис. 12.3, для этой диаграммы можно выписать точную математическую формулу, в которой учитывается влияние рождения пары виртуальных струн на движение двух исходных. Однако это еще не все: краткосрочные извержения виртуальных струн вследствие квантовых флуктуации могут произойти любое число раз, что приведет к рождению последовательных виртуальных пар. При этом получатся диаграммы с большим количеством петель, как показано на рис. 12.5.
Рис. 12.5. Квантовый хаос может привести к рождению и уничтожению длинных последовательностей пар струна / антиструна. Каждая диаграмма дает простой и удобный способ описания соответствующего физического процесса. Налетающие струны сливаются, квантовый хаос вызывает раздвоение получившейся петли на виртуальную пару, струны этой пары движутся, затем аннигилируют с образованием одной петли, которая далее снова распадается на виртуальную пару и т.д. Как и для других диаграмм, для каждого из этих процессов есть математические формулы, в которых учитывается влияние на движение исходной пары струн.[117] Более того, аналогично примеру с механиком, определившим конечную стоимость ремонта сложением его исходной оценки $900 с последующими поправками $50, $27, $10 и $0,93, и аналогично уточнению описания движения Земли при добавлении к влиянию Солнца меньшего влияния Луны и других планет, теоретики показали, что взаимодействие двух струн можно вычислить путем сложения математических выражений для диаграмм без петель (без пар виртуальных струн), с одной петлей (одной парой виртуальный струн), с двумя петлями (двумя парами виртуальных струн) и т.д., как показано на рис. 12.6.
Рис. 12.6. Суммарное воздействие одной струны, налетающей на другую, есть результат сложения воздействий, включающих диаграммы с увеличивающимся числом петель. В точном расчете требуется сложить математические выражения для всех этих диаграмм с растущим числом петель. Но так как диаграмм бесконечно много, а соответствующие математические вычисления с ростом числа петель усложняются, эта задача неразрешима. И здесь занимающиеся струнами теоретики берут на вооружение теорию возмущений, предполагая, что разумная грубая оценка дается процессом без петель, а диаграммы с петлями дают поправки, значения которых уменьшаются по мере увеличения числа петель. В действительности, почти все, что мы знаем о теории струн, включая большую часть сведений из предыдущих глав, было открыто физиками при проведении подробных и тщательных вычислений по теории возмущений. Но чтобы удостовериться в точности полученных результатов, необходимо выяснить, являются ли грубые приближения, в которых учитывается только несколько первых диаграмм рис. 12.6, а все остальные диаграммы опущены, действительно хорошим приближением. Нельзя сказать заранее. Хотя математические формулы, соответствующие диаграммам, значительно усложняются при увеличении числа петель, теоретикам удалось установить одно очень важное свойство. Подобно тому, как вероятность разрыва каната на две части при сильном растяжении и раскачивании определяется его прочностью, вероятность распада струны с образованием виртуальной пары при квантовых флуктуациях также определяется некоторым параметром. Этот параметр называют Немного ниже мы обсудим вопрос об определении константы связи струны в каждой из пяти теорий, однако сначала необходимо уточнить, что означают слова «большая» и «малая» применительно к константе связи. Оказывается, что с точки зрения математического формализма теории струн границей между областями «больших» и «малых» констант связи является число 1. Это означает, что при константах связи, меньших 1, молниеносное вырывание большого числа пар виртуальных струн становится крайне маловероятным. Однако если константа связи больше или равна 1, то краткосрочное появление на сцене таких виртуальных пар становится весьма вероятным и увеличивается с увеличением константы связи струны.[118] В итоге, при константах связи струны, меньших 1, вклады диаграмм с петлями при увеличении числа петель уменьшаются. Это как раз то, что нужно для подхода с использованием теории возмущений: уменьшение вкладов говорит о том, что мы получим достаточно точные результаты, если будем пренебрегать всеми вкладами, кроме вкладов диаграмм, содержащих лишь несколько петель. Но если константа связи струны больше 1, то по мере увеличения числа петель старшие петлевые вклады становятся все более важными. Как и в случае тройной системы звезд, теория возмущений здесь неприменима. И первое приближение, которое дают диаграммы без петель, приближением Поэтому возникает еще один важнейший вопрос: чему же равно значение константы связи (точнее, чему равны значения констант связи струны в каждой из пяти теорий струн)? Как и для определения взаимодействия между струнами, для поиска фундаментальных уравнений теории струн может использоваться теория возмущений. На самом деле, эти уравнения определяют то, как струны взаимодействуют между собой, и, наоборот, способ взаимодействия струн определяет уравнения теории. В каждой из пяти теорий струн существует уравнение, с помощью которого можно вычислить значение константы связи в этой теории. Однако к настоящему времени для всех пяти теорий физикам удалось найти лишь приближенный вид этого уравнения, полученный в рамках теории возмущений путем вычисления небольшого числа определенных диаграмм. И во всех пяти теориях приближенный вид уравнения говорит лишь о том, что если умножить значение константы связи на нуль, должен получиться нуль. Результат крайне удручающий, так как любое число при умножении на нуль дает нуль, и уравнению удовлетворяет любое значение константы связи струны. Поэтому во всех пяти теориях приближенные уравнения для определения константы связи не дают никакой информации о ее значении. Кроме того, в каждой из пяти теорий струн должно существовать уравнение, с помощью которого в принципе можно определить точный вид как протяженных, так и свернутых пространственно-временных измерений. Известный на данный момент приближенный вид этого уравнения приводит к гораздо более жестким ограничениям, чем вид уравнения для константы связи, но допустимых решений все равно оказывается очень много. Например, допустимы решения с четырьмя протяженными и шестью свернутыми измерениями Калаби-Яу, но даже этим широким классом решений все они не исчерпываются: возможны и другие разбиения числа измерений на протяженные и свернутые.[119] Что означают эти результаты? Возможны три ситуации. В первом, наихудшем случае даже при наличии уравнений для определения константы связи струны, а также уравнений для определения размерностей и точного вида пространства-времени (этим не может похвастаться ни одна теория), до сих пор не найденные точные уравнения могут допускать широкий спектр решений, что значительно ослабляет их предсказательную силу. Если это так, это будет крахом гипотезы о том, что теория струн способна К началу 1990-х гг. анализ двух последних возможностей убедил большинство теоретиков в том, что повсеместное использование теории возмущений является помехой на пути прогресса. По мнению подавляющего большинства ученых, следующее серьезное продвижение возможно лишь при использовании подхода, не скованного приближенными методами и, следовательно, далеко выходящего за рамки теории возмущений. Еще в 1994 г. разработка такого подхода казалась несбыточной мечтой. Однако иногда и такие мечты сбываются. Сотни занимающихся теорией струн теоретиков из многих стран мира ежегодно съезжаются на конференцию, посвященную обсуждению полученных за «отчетный» год результатов и оценке перспектив возможных направлений исследования. В зависимости от достигнутого в данном году прогресса обычно легко предугадать степень интереса и энтузиазм его участников. В середине 1980-х гг., в апогее первой революции в теории суперструн, на семинарах царила безграничная эйфория. Физиков окрыляла надежда на то, что скоро у них появится полное понимание теории струн, и она предстанет пред ними в качестве окончательной теории Вселенной. Сегодня это кажется наивным. Как выяснилось в следующие годы, для понимания многих глубоких и нетривиальных аспектов теории струн требуются длительные и напряженные исследования. После того как далеко не все сразу становилось на свои места, необоснованная первоначальная эйфория сменилась мертвым сезоном, а многие исследователи впали в уныние. Конференции по струнам, проводившиеся в конце 1980-х гг., отражали скрытое разочарование: физики представляли интересные результаты, но в атмосфере конференции не чувствовалось вдохновения. Некоторые даже предлагали отменить ежегодную конференцию. Однако в начале 1990-х годов ситуация стала исправляться. После ряда значительных прорывов (некоторые из них обсуждались в предыдущих главах) теория струн вновь стала набирать свою силу, и у многих исследователей опять появился энтузиазм и оптимизм. Тем не менее, трудно было предположить то, что произойдет на конференции по струнам, состоявшейся в марте 1995 г. в университете Южной Калифорнии. Когда подошло время заявленного выступления Эдварда Виттена, он поднялся на кафедру и сделал доклад, который вызвал вторую революцию в теории суперструн. Вдохновленный результатами более ранних работ Даффа, Халла и Таунсенда, а также замечательными идеями Шварца, Ашока Сена и других теоретиков, Виттен объявил о новой стратегии выхода за рамки теории возмущений в теории струн. Главным элементом этой стратегии было понятие Физики используют это понятие для описания теоретических моделей, которые кажутся различными, но приводят к идентичным физическим следствиям. Есть «тривиальные» примеры дуальности, в которых совершенно одинаковые теории могут казаться различными лишь вследствие того, как эти теории представлены. Человек, понимающий только английский язык, не поймет, что речь идет о теории относительности, если объяснять ему эту теорию на китайском языке. Однако физик, свободно владеющий обоими языками, легко переведет ее на свой язык и установит эквивалентность двух теорий. Мы называем этот пример «тривиальным», поскольку с точки зрения физики при переводе не обнаруживается ничего нового. Для владеющих разными языками теоретиков получить новый результат в теории относительности одинаково сложно вне зависимости от того, на каком языке эта теория сформулирована. Переход от английского к китайскому и обратно не приводит к появлению новых физических результатов. Нетривиальными являются те примеры дуальности, в которых различные описания одной и той же ситуации В своей лекции на конференции «Струны-95» Виттен привел пример нового и фундаментального типа дуальности. Как кратко отмечено в начале этой главы, он предположил, что пять теорий струн, имеющих совершенно разную структуру, на самом деле являются лишь разными способами описания одного и того же физического мира. Работая с пятью теориями струн, мы просто смотрели в пять разных окон, обращенных в сторону одного теоретического фундамента. До событий середины 1990-х гг. возможность существования дуальности такого масштаба была одной из лелеемых физиками идей, о которой можно было упоминать лишь шепотом — настолько она представлялась фантастической. Если две теории существенно расходятся в деталях формулировки, трудно вообразить, что эти теории могут быть просто двумя разными описаниями одной и той же физической реальности, лежащей в основе. Тем не менее, с развитием теории струн появляются все более убедительные свидетельства в пользу того, что все пять теорий струн Эти результаты тесно переплетены с вопросами о применимости методов теории возмущений, обсуждавшихся в конце предыдущего пункта. Причина в том, что пять теорий струн сильно отличаются друг от друга, если в каждой из них предполагается наличие Чтобы яснее понять смысл последнего утверждения, можно взять на вооружение следующую аналогию. Представим себе двух, мягко говоря, слегка чудаковатых индивидуумов. Один из них обожает лед, но, как ни странно, никогда не видел воды. Второй обожает воду, но, что не менее странно, никогда не видел льда. Однажды они встречаются и решают отправиться в поход по пустыне. В начале похода каждый из них изумлен снаряжением другого. Любитель льда пленен гладкой поверхностью прозрачной жидкости, которую принес с собой любитель воды, а любителя воды странным образом притягивают твердые кубики, принесенные любителем льда. Ни один из них и не подозревает о близком родстве между льдом и водой; для них эти субстанции совершенно различны. Но, продвигаясь по палящей жаре пустыни, они поражены тем, что лед начинает медленно превращаться в воду. А позже, дрожа от дикого холода пустынной ночи, они столь же сильно поражены тем, что жидкая вода начинает медленно превращаться в твердый лед. И тут до них доходит, что вода и лед, которые они считали совершенно разными веществами, тесно связаны между собой. Дуальность в пяти теориях струн в чем-то похожа на этот пример: грубо говоря, константы связи струны играют роль, аналогичную температуре в пустыне. Подобно воде и льду, любые две из пяти теорий с первого взгляда кажутся совершенно различными. Но при изменении соответствующих констант связи эти теории превращаются одна в другую. Так же, как лед превращается в воду при увеличении температуры, одна из теорий переходит в другую при увеличении константы связи. Эта аналогия, в конце концов, может привести нас к выводу о том, что все теории струн являются дуальными описаниями единой структуры — аналога Н2О для воды и льда. Аргументация в пользу такого вывода почти целиком основана на принципах симметрии. Обсудим эти принципы. Никто и никогда даже не пытался изучить свойства любой из пяти теорий струн при больших значениях констант связи, потому что не было и намека на то, как поступать вне рамок теории возмущений. Однако в конце 1980-х — начале 1990-х гг. физики начали делать первые, но твердые шаги к описанию конкретных свойств теорий (в частности, к вычислению отдельных масс и зарядов), проявляющихся в области физики сильной связи для данной теории, но все же находящихся в пределах наших вычислительных возможностей. Такие вычисления, с необходимостью выходившие за рамки теории возмущений, сыграли главную роль во второй революции суперструн и стали возможными во многом благодаря соображениям симметрии. Принципы симметрии дают мощные средства для изучения многих свойств реального мира. Мы уже упоминали о том, что хорошо подтверждающаяся уверенность в том, что законы физики не выделяют никакое конкретное место во Вселенной и никакой конкретный момент времени, позволяет нам предположить, что законы «здесь и сейчас» будут теми же самыми, что и «там и тогда». Это всеобъемлющий пример; но принципы симметрии могут с тем же успехом применяться в более скромных случаях. Например, если свидетель ограбления разглядел лишь правую половину лица преступника, в полиции его информация все равно окажется ценной для составления фоторобота. Симметрия тому причиной. Хотя правая и левая половина лица отличаются, большинство лиц достаточно симметричны для того, чтобы отраженный образ одной половины лица можно было бы с успехом использовать в качестве приближения для другой половины. В каждом из разнообразных применений роль симметрии состоит в возможности восстановления свойств по Суперсимметрия принадлежит к более абстрактным типам симметрии, который связывает физические свойства элементарных объектов с различными спинами. Эксперимент дает лишь косвенные намеки на то, что в микромире реализуется такой механизм симметрии, но по описанным выше причинам физики твердо убеждены, что он действительно реализуется. Естественно, этот механизм является неотъемлемой частью теории струн. В 1990-е гг. после пионерской работы Натана Зайберга из Института перспективных исследований физики осознали, что суперсимметрия дает мощный инструмент, используя который можно косвенным методом ответить на ряд очень сложных и важных вопросов. Одно то, что теория обладает суперсимметрией, позволяет даже без понимания всех тонкостей теории накладывать существенные ограничения на ее допустимые свойства. Приведем пример из лингвистики. Пусть известно, что в некоторой последовательности букв буква «у» встречается ровно три раза, и задача состоит в том, чтобы угадать эту последовательность. Не имея дополнительной информации, невозможно найти однозначное решение: подойдет любая последовательность с тремя буквами «у», например Суперсимметрия также дает подсказки, позволяющие конкретизировать ситуацию в теориях, которым свойственны такие принципы симметрии. Чтобы понять это, представьте, что вы столкнулись с физической задачей, аналогичной только что описанной задаче из лингвистики. Внутри черного ящика находится нечто неопознанное с определенным зарядом. Заряд может быть электрическим, магнитным, или иметь иную природу; для определенности примем, что этот заряд равен трем единицам электрического заряда. Без дополнительной информации определить содержимое ящика невозможно. В нем могут находиться три частицы с зарядом 1, подобные позитронам или протонам, или четыре частицы с зарядом 1 и одна частица с зарядом −1 (например, электрон), или девять частиц с зарядом 1/3 (например, Но теперь, как и в примере из лингвистики, предположим, что нам даны еще две подсказки: во-первых, теория, описывающая мир (а, следовательно, и содержимое черного ящика) является суперсимметричной, и, во-вторых, содержимое черного ящика должно иметь Важность БПС-состояний состоит в том, что их свойства однозначно, легко и точно определяются без привлечения теории возмущений. Это справедливо вне зависимости от значения констант связи. Даже если константа связи струны велика, и, следовательно, подход с использованием теории возмущений неприменим, все равно можно вычислить точные параметры БПС-состояний. Эти параметры часто называют БПС-свойства описывают лишь малую долю всех физических явлений в конкретной теории струн при больших константах связи, но эти состояния позволяют четко прояснить некоторые характеристики теории в области сильной связи. При выходе константы связи струны за рамки применимости теории возмущений, привязка к БПС-состояниям позволяет расширить границы нашего понимания теории. Как и знание лишь нескольких выборочных слов в иностранном языке, эти состояния могут нам помочь продвинуться довольно далеко. Следуя Виттену, начнем с анализа одной из пяти теорий, например теории струн типа I, и предположим, что все ее девять пространственных измерений являются плоскими и несвернутыми. Такое предположение, разумеется, совершенно нереалистично, но оно делает анализ проще; случай свернутых измерений будет рассмотрен немного ниже. Примем сначала, что константа связи струны много меньше 1. В этом случае справедливы методы теории возмущений, и многие конкретные характеристики теории могут быть (и были) изучены довольно точно. Если мы будем увеличивать константу связи, но следить, чтобы она оставалась гораздо меньше 1, методы теории возмущений будут оставаться справедливыми. Однако конкретные характеристики теории несколько изменятся. Например, численные параметры рассеяния двух струн станут немного иными, так как изображенные на рис. 12.6 диаграммы с петлями при увеличении константы связи дадут большие вклады. Несмотря на эти изменения численных параметров, физическое содержание теории останется неизменным, если величина константы связи соответствует области применимости теории возмущений. Когда значение константы связи струны типа I превысит единицу, методы теории возмущений станут неприменимыми, так что мы сфокусируем наше внимание на ограниченном наборе масс и зарядов БПС-состояний, которые мы еще будем в состоянии понять. Согласно гипотезе Виттена, подтвержденной затем в совместной работе с Джо Польчински из университета Санта Барбары, Этот существенно новый результат — возможность описания физических свойств одной теории в области сильной связи в рамках другой теории в области слабой связи — называют Строгое доказательство того, что физические процессы в теории струн типа I для малых констант связи идентичны физическим процессам в теории О-гетеротической струны для больших констант связи и обратно, является очень сложной и до сих пор не решенной задачей. Одна из двух предположительно дуальных теорий не может быть исследована по теории возмущений, так как ее константа связи слишком велика. Это не позволяет провести прямой расчет многих физических характеристик теории. И именно этим объясняется мощный потенциал предполагаемой дуальности: если гипотеза дуальности верна, она дает новый инструмент исследования теории в области сильной связи. Нужно лишь использовать теорию возмущений для дуальной теории в области слабой связи. Даже если нельзя доказать, что две теории дуальны, полное согласие результатов, которые Тем же самым методом можно изучить свойства других теорий струн, например, типа IIB. Согласно первоначальному предположению Халла и Таунсенда, которое затем было подтверждено исследованиями ряда физиков, в этой теории происходит нечто столь же необычное. При увеличении константы связи те физические свойства, которые еще можно определить, начинают совпадать со свойствами той же теории струн типа IIB в области слабой связи. Другими словами, теория струн типа IIB является Итак, посмотрим, где мы находимся. К середине 1980-х гг. физики построили пять теорий суперструн. При исследовании приближенными методами теории возмущений свойства пяти теорий казались различными. Однако эти приближенные методы применимы лишь тогда, когда константа связи струны меньше 1. Ожидалось, что константу связи в каждой теории можно будет вычислить точно, но из вида приближенных уравнений для констант стало ясно, что такое вычисление в настоящее время невозможно. Поэтому физики направили свои усилия на изучение всех пяти теорий в допустимых диапазонах соответствующих констант связи, как для констант, меньших 1, так и больших 1, т.е. при слабой и при сильной связи. Однако попытки определить свойства любой из этих теорий в области сильной связи на основе традиционных методов теории возмущений оказались тщетными. В настоящее время физики научились рассчитывать определенные характеристики каждой теории струн в области сильной связи, используя мощный формализм суперсимметрии. Ко всеобщему изумлению всех теоретиков, свойства теории О-гетеротических струн в области сильной связи оказались идентичными свойствам теории струн типа 1 в области слабой связи, и наоборот. Более того, свойства теории струн типа IIB в области сильной связи оказались идентичными свойствам той же теории в области слабой связи. Эти неожиданные открытия побуждают нас, следуя Виттену, перейти к анализу двух оставшихся теорий струн, струн типа IIA и Е-гетеротической струны, и выяснить, как эти теории вписываются в общую картину. И здесь нас ожидают еще более удивительные неожиданности. Для того чтобы подготовиться к ним, необходимо совершить краткий исторический экскурс. В конце 1970-х — начале 1980-х гг., до всплеска бурного интереса к теории струн, многие физики-теоретики пытались объединить квантовую теорию, гравитацию и другие взаимодействия в формализме единой теории поля для точечных частиц. Они надеялись, что препятствия, возникающие при попытках объединить теории точечных частиц, включающие квантовую механику и гравитацию, будут устранены при исследовании теорий с высокой степенью симметрии. В 1976 г. сотрудники Нью-йоркского университета Стони Брук Дэниел Фридман, Серджо Феррара и Питер ван Ньювенхейзен обнаружили, что наиболее многообещающими являются теории на основе суперсимметрии, так как в них сокращения многих квантовых флуктуаций бозонов и фермионов помогают умиротворить хаос на микроскопических масштабах. В своей работе эти ученые дали название Урок, смысл которого, вероятно, стал более ясен после работы сотрудников Парижской высшей технической школы Юджина Креммера, Бернара Джулиа и Шерка (1978 г.) состоял в том, что успешнее остальных оказались попытки построить теории супергравитации не в четырех, а в большем числе измерений. А именно, наиболее перспективными оказались варианты теорий в десяти или одиннадцати измерениях, при этом число одиннадцать оказалось максимально возможным числом измерений.[124] Связь с четырьмя наблюдаемыми измерениями в этих теориях также обеспечивалась путем использования формализма Калуцы-Клейна: лишние измерения сворачивались. В десятимерных теориях, как и в теории струн, сворачивалось шесть измерений, а в 11-мерной теории сворачивалось семь измерений. Когда в 1984 г. теория струн увлекла многих физиков, виды на будущее у теорий супергравитации для точечных частиц резко ухудшились. Как уже неоднократно подчеркивалось, при точности, доступной сегодня и в обозримом будущем, струны Примечательно, что квантовой теорией поля, дающей наилучшее приближение теории струн в указанном смысле, является десятимерная теория супергравитации. Особые свойства этой теории, обнаруженные в 1970-х и 1980-х гг., теперь находят свое объяснение: они являются низкоэнергетическими отголосками свойств теории струн. Исследователи, изучавшие десятимерную супергравитацию, обнаружили лишь вершину огромного айсберга конструкции теории суперструн. В действительности оказывается, что существуют четыре различных теории десятимерной супергравитации, и эти теории отличаются в деталях конкретной реализации суперсимметрии. Три из них являются низкоэнергетическими приближениями струн типа IIA, типа IIB и Е-гетеротических струн точечными частицами. Четвертая теория является низкоэнергетическим пределом как струн типа I, так и О-гетеротических струн; в ретроспективе, этот факт был первым указанием на близость двух последних теорий. Схема выглядит безупречной, вот только 11-мерная супергравитация осталась не у дел. В теории струн, которая формулируется в десяти измерениях, кажется, нет места для 11-мерной теории. На протяжении нескольких лет большинство физиков за редким исключением рассматривали 11-мерную супергравитацию в качестве математического курьеза, не имеющего никакого отношения к физике теории струн.[125] Сегодня точка зрения радикально изменилась. На конференции «Струны-95» Виттен сделал следующее утверждение: если взять теорию струн типа IIA с константой связи, много меньшей 1, и увеличивать константу связи до значения, много большего 1, то физические свойства, которые мы еще способны анализировать (по существу, свойства насыщенных БПС-состояний), в низкоэнергетическом пределе будут соответствовать свойствам 11-мерной супергравитации. Когда Виттен объявил о своем открытии, все присутствовавшие в аудитории потеряли дар речи, а позже весть об этом открытии громом пронеслась по всем институтам, где занимаются теорией струн. Почти для всех специалистов в этой области результат был полной неожиданностью. Первая реакция читателя этой книги, возможно, тоже будет напоминать реакцию большинства экспертов: Ответ несет в себе глубокий смысл. Чтобы понять его, нужно описать результат Виттена более точно. На самом деле, сначала проще обратиться к другому тесно связанному с этим результату, полученному чуть позже Виттеном и стажером Принстонского университета Петром Хофавой для теории Е-гетеротической струны. Для этой теории в области сильной связи ими также было найдено описание в терминах 11-мерной теории; это поясняется на рис. 12.7. Слева на этом рисунке схематически показана теория Е-гетеротической струны с константой связи, много меньшей 1. Эта область констант связи рассматривалась в предыдущих главах и изучалась теоретиками на протяжении более десяти лет. При переходе вправо на рис. 12.7 значение константы связи постепенно увеличивается. До 1995 г. теоретикам было известно, что при этом вклады петлевых диаграмм (см. рис. 12.6) будут становиться все более важными, и при дальнейшем увеличении константы связи весь формализм теории возмущений перестает быть справедливым. Но никто не мог даже вообразить того, что при увеличении константы связи проявится новое измерение! На рис. 12.7 это измерение соответствует вертикали. Нужно помнить, что двумерная сетка на рисунке, с которого мы начали обсуждение, представляет все девять пространственных измерений Е-гетеротической струны. Новое измерение по вертикали будет
Рис. 12.7. При увеличении константы связи Е-гетеротической струны появляется новое измерение, и сама струна вытягивается, принимая вид цилиндрической мембраны. Кроме того, на рис. 12.7 иллюстрируется важнейшее следствие существования этого нового измерения. Это утверждение не обесценивает ни одного из выводов предыдущих глав, но побуждает рассмотреть их в рамках нового формализма. Возникает, например, вопрос, как можно состыковать новые результаты с тем, что в теории струн требуется одно временное и девять пространственных измерений? Что же, как обсуждалось в главе 8, это ограничение возникает при расчете числа различных направлений, в которых может колебаться струна, и число измерений выбирается так, чтобы квантово-механические вероятности гарантированно имели осмысленные значения. Новое измерение не является измерением, в котором может колебаться Е-гетеротическая струна, так как оно зафиксировано в самой структуре «струны». Кроме того, в формализме теории возмущений, который использовался физиками для вывода ограничения на число пространственно-временных измерений, предполагалась, что константа связи Е-гетеротической струны мала. И хотя это было осознано гораздо позднее, в таком предположении неявно используются два взаимосогласованных приближения: малая ширина мембраны на рис. 12.7, при которой она выглядит, как струна, и малый размер одиннадцатого измерения, не влияющий на вид уравнений теории возмущений. В рамках этой приближенной схемы мы вынуждены представлять себе Вселенную десятимерной и заполненной одномерными струнами. Теперь мы видим, что она 11-мерная и заполнена двумерными мембранами. По техническим причинам, впервые Виттен столкнулся с одиннадцатым измерением при исследовании сильной связи струны типа IIA, для которой ситуация вполне аналогична. Как и в случае Е-гетеротической струны, размер одиннадцатого измерения в случае струны типа IIA определяется значением ее константы связи. При увеличении этого значения новое измерение расширяется. По мере расширения, однако, струна типа IIA превращается в «велосипедную камеру» (см. рис. 12.8), а не в ленту, как в случае Е-гетеротической струны.
Рис. 12.8. По мере увеличения константы связи для струны типа IIA струны расширяются, превращаясь из одномерных петель в двумерные объекты, похожие на велосипедную камеру. И снова, согласно Виттену, традиционные представления физиков о струнах типа IIA как об одномерных объектах, имеющих длину, но не имеющих толщины, есть следствие использования ими формализма теории возмущений, в котором константа связи струны предполагается малой. Если законы природы требуют, чтобы константа связи Но Для этой 11-мерной теории, что бы она собой ни представляла, Виттен придумал рабочее название: Есть старая притча о трех слепцах и слоне. Первый слепец ощупывает бивень слона и говорит, что чувствует что-то гладкое и твердое. Второй держится за ногу и описывает что-то шероховатое и мускулистое. Третий слепец держит слона за хвост и говорит о чем-то гибком и хилом. Слыша описания других слепцов, каждый из них думает, что держится за другое животное. Много лет физики были столь же слепы и думали, что разные теории струн В этой главе мы обсудили, как изменилось наше понимание теории струн при выходе за рамки теории возмущений, неявно использовавшейся в предыдущих главах. На рис. 12.9 подведен итог тем взаимосвязям, которые обсуждались до этого момента. Стрелками на этом рисунке обозначены дуальные теории. Видно, что мы имеем паутину взаимосвязей, но она соткана еще не полностью.
Рис. 12.9. Стрелки обозначают отношения дуальности для теорий. Включая дуальности из главы 10, можно довести дело до конца. Вспомним о дуальности, возникающей при замене радиуса циклического измерения Дело в том, что с учетом дуальности при замене радиусов в теориях струн типов IIA и IIB, а также с учетом той же дуальности для теорий О- и Е-гетеротических струн можно достроить до конца паутину взаимосвязей, как показано на рис. 12.10 пунктирными линиями. Видно, что все пять теорий, а также M-теория, дуальны друг другу. Все они скреплены в единую теоретическую конструкцию и дают пять разных подходов для описания одной и той же физики, лежащей в основе этой формулировки. Для различных приложений может быть более удобным язык той или иной теории. Например, с теорией О-гетеротических струн в случае слабой связи работать гораздо удобнее, чем с теорией струн типа I в случае сильной связи. Тем не менее эти теории описывают одни и те же физические явления.
Рис. 12.10. С учетом дуальностей, включающих геометрию пространства-времени (как в главе 10) все пять теорий вместе с M-теорией связываются воедино паутиной дуальностей. Теперь становятся более понятными рис. 12.1 и 12.2, приведенные в начале этой главы для иллюстрации важнейших черт теории. Как видно из рис. 12.1, до 1995 г., в отсутствие каких-либо сведений о дуальности, было пять не связанных между собой теорий. Над каждой из них работало много физиков, но без привлечения аргументов о дуальных свойствах эти теории казались различными. У каждой теории был свой набор характеристик: своя константа связи, геометрическая структура, радиусы свернутых измерений и т.д. Физики надеялись (и продолжают надеяться) на то, что фундаментальные свойства должны определяться в рамках самой теории. Однако, не имея возможности определить их при помощи известных приближенных уравнений, теоретики, естественно, начали исследовать физические свойства во всех возможных диапазонах. Это показано на рис. 12.1, где каждая точка затушеванной области соответствует конкретному выбору константы связи и геометрии свернутых измерений. Без учета дуальности при этом все равно оставалось пять несвязанных (наборов) теорий. Но сейчас, когда рассмотренные выше дуальности учтены, при изменении констант связи и геометрии можно переходить от одной теории к другой, если при этом включить в анализ и объединяющую их центральную область — M-теорию (рис. 12.2). И хотя наши познания в области M-теории очень скудны, приведенные косвенные соображения дают веские аргументы в пользу того, что M-теория является основой объединения пяти на первый взгляд различных теорий струн. Более того, выясняется, что M-теория тесно связана с шестой теорией — 11-мерной супергравитацией. Это отражено на рис. 12.11, более точном варианте рис. 12.2.[126] Как показано на рис. 12.11, несмотря на то, что сегодня фундаментальные идеи и уравнения M-теории еще мало исследованы, они объединяют все формулировки теории струн.
Рис. 12.11. С учетом дуальностей все пять теорий струн, 11-мерная супергравитация и M-теория сливаются вместе в единую схему. Могущественная M-теория указала физикам дорогу к новой и гораздо более глубокой единой формулировке. Когда на территории одного из пяти полуостровов на теоретической карте рис. 12.11 константа связи струны мала, фундаментальный объект в этой теории выглядит как одномерная струна. Сейчас, однако, у нас появилась новая точка зрения. Если начать двигаться из области Е-гетеротических струн или струн типа IIA, увеличивая значения соответствующих констант связи, то постепенно мы сместимся к центру карты рис. 12.11, и объекты, казавшиеся одномерными струнами, начнут вытягиваться, превращаясь в двумерные мембраны. Более того, в результате более сложной последовательности преобразований дуальности, включающих как изменения констант связи струн, так и изменения вида свернутых измерений, можно беспрепятственно перейти из любой точки на рис. 12.11 к любой другой ее точке. А так как двумерные мембраны, которые мы открыли, рассматривая Е-гетеротические струны и струны типа IIA, нам будут сопутствовать при переходе к любой из трех других формулировок, мы приходим к выводу, что двумерные мембраны на самом деле присущи любой из пяти формулировок теорий струн. Возникают два вопроса. Во-первых, являются ли двумерные мембраны подлинно фундаментальными объектами теории струн? Во-вторых, если вспомнить о смелом рывке от нульмерных точечных частиц к одномерным струнам в 1970-х и начале 1980-х гг. и учесть только что обсужденные результаты о существовании двумерных мембран в теории струн, возможно ли, что в теории присутствуют объекты старших размерностей? На момент написания этой книги точные ответы еще не известны, но ситуация, похоже, следующая. Чтобы разобраться в каждой из формулировок теории струн, не прибегая к теории возмущений, теоретики во многом опирались на принципы суперсимметрии. В частности, характеристики БПС-состояний, массы и заряды частиц в этих состояниях, однозначно определяются суперсимметрией, и это позволило понять некоторые свойства теории в области сильной связи без необходимости проведения прямых вычислений невообразимой сложности. На самом деле, благодаря пионерским работам Хоровица и Строминджера, а также последующей замечательной работе Польчински, о БПС-состояниях мы знаем даже больше. В частности, нам не только известны их заряды и массы, но имеется ясное представление о том, как эти состояния Несмотря на «демократию бран», струны, т.е. протяженные одномерные объекты, все-таки уникальны по следующей причине. Физики показали, что массы протяженных объектов любой размерности, кроме одномерных струн, Таким образом, следует представлять себе такую картину: в центральной области на рис. 12.11 фундаментальными объектами теории являются не только струны и мембраны, а «браны» различных размерностей, и все они более или менее равноправны. Сейчас у нас нет ясного понимания многих свойств этой богатой теории. Одно мы знаем твердо: при движении от центральной области в сторону любого из полуостровов только струны или свернутые мембраны в обличье струн (рис. 12.7 и 12.8) оказываются достаточно легкими, чтобы сохраниться и привести к известной нам физике — частицам из табл. 1.1 и четырем типам взаимодействий. Подход теории возмущений, который физики использовали почти два десятилетия, был недостаточно гибок для того, чтобы выявить существование протяженных объектов огромной массы и других размерностей. Центральным объектом анализа были струны, и теория получила далеко не демократическое название теории струн. Отметим еще раз, что в этих областях рис. 12.11 для большинства исследований можно с полным основанием пренебречь всеми объектами, кроме струн. По существу, в предыдущих главах этой книги мы так и поступали. Однако сейчас мы видим, что теория оказалась в действительности богаче, чем кто-либо ранее предполагал. И да, и нет. Нам удалось достичь более глубокого понимания, освободившись от некоторых выводов, которые, как стало ясно теперь, были следствиями использования теории возмущений, а не истинных принципов теории струн. Однако в настоящее время методы, позволяющие работать вне рамок теории возмущений, весьма ограничены. Открытие замечательной системы дуальных связей позволяет глубже постичь теорию струн, но многие вопросы остаются неразрешенными. Например, мы еще не знаем, как выйти за рамки приближенных уравнений для определения значения константы связи струны. Как обсуждалось выше, эти уравнения слишком грубые, чтобы из них можно было извлечь хоть какую-то полезную информацию. Нет у нас и существенных продвижений по вопросам о том, почему протяженных пространственных измерений именно три или каким должен быть точный вид многообразия для свернутых измерений. Для ответа на эти вопросы нужны более отточенные инструменты исследований вне рамок теории возмущений, чем те, которыми мы сегодня обладаем. То, что действительно появилось, — это гораздо более глубокое понимание логической структуры и исследовательского диапазона теории струн. До открытий, итог которым подведен на рис. 12.11, поведение каждой теории струн в области сильной связи было полной загадкой. Как на средневековых картах, царство сильной связи было белым пятном, на которое, сообразно фантазии картографа, наносились изображения драконов и морских чудовищ. Но сейчас мы видим, что хотя путешествие в это царство может завести нас в неизведанные просторы M-теории, в конце концов мы снова выйдем в курортную зону слабой связи, где говорят на дуальном языке другой теории струн, ранее считавшейся совершенно непохожей. Дуальность и M-теория объединяют пять теорий струн, подталкивая к важному выводу. Может оказаться и так, что нас больше не поджидают удивительные открытия, сравнимые с описанными выше. Как только картограф обозначил все точки на глобусе Земли, глобус готов, и география исчерпана. Это не означает, что разведка местности в Антарктиде или на необитаемых островах в Микронезии лишены всякой научной или культурной ценности. Это означает лишь, что век географических открытий подошел к концу. И свидетельством тому — отсутствие белых пятен на карте. «Теоретическая карта» на рис. 12.11 имеет для теоретиков, занимающихся струнами, такое же значение. Она покрывает все сферы теории, в которые можно попасть, отправляясь из области любой из пяти формулировок струн. И хотя нам далеко до полного понимания неизведанной M-теории, на карте нет белых пятен. Как и картограф, теоретик может теперь со сдержанным оптимизмом заявить, что весь спектр логически обоснованных теорий, вбирающих в себя все важные открытия прошлого века — специальную и общую теории относительности, квантовую механику, калибровочные теории сильного, слабого и электромагнитного взаимодействий, суперсимметрию, дополнительные измерения Калуцы и Клейна, — уже нанесен на карту рис. 12.11. Задача струнного теоретика (возможно, его уже нужно называть M-теоретиком) — показать, что |
||||||||||||||||||||||||
|