"Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует" - читать интересную книгу автора (Смолин Ли)11 Антропное решениеМногие физики, которых я знаю, снизили свои ожидания по поводу того, что теория струн является фундаментальной теорией природы, - но не все. В последние несколько лет стало модным утверждать, что проблема связана не с теорией струн, а с нашими ожиданиями, как должна выглядеть любая физическая теория. Этот аргумент был введен пару лет назад Леонардом Сасскайндом в статье, озаглавленной "Антропный ландшафт теории струн": На основании недавней работе нескольких авторов кажется правдоподобным, что ландшафт невообразимо велик и разнообразен. Нравится нам это или нет, такое поведение повышает доверие к антропному принципу. ... [ТТеории в ландшафте Стэнфордской группы] совсем не просты. Они создали аварийное устройство, новое хитроумное изобретение Руби Голдберга*, которое едва ли могло иметь фундаментальное значение. Но в антропной теории простота и элегантность не являются предметом рассмотрения. Единственным критерием для выбора вакуума является пригодность, то есть содержит ли он необходимые элементы, такие как формирование галактик и сложную химию, которая необходима для жизни. Это вместе с космологией, которая гарантирует высокую вероятность того, что, по меньшей мере, один большой участок пространства будет сформирован с такой вакуумной структурой, есть все, что нам нужно.[61] Антропный принцип, на который ссылался Сасскайнд, это старая идея, предлагаемая и рассматриваемая космологами с 1970х, работающая с фактом, что жизнь может возникнуть только в экстремально узком диапазоне всевозможных физических параметров и еще, достаточно странно, мы здесь, якобы, потому, что вселенная выстроена так, чтобы мы смогли приспособиться (отсюда термин "антропный"). Специфическая версия, которую привлек Сасскайнд, является космологическим сценарием, который некоторое время пропагандируется Андреем Линде, именуемым вечная инфляция. В соответствии с этим сценарием быстрая инфляционная фаза ранней вселенной приводит не к одной, а к бесконечному семейству вселенных. Вы можете думать об изначальном состоянии вселенной как о фазе, которая экспоненциально расширяется и никогда не останавливается. В ней возникают пузырьки, и в этих местах расширение разительно замедляется. Наш мир является одним из таких пузырьков, но имеется бесконечное количество других. К этому сценарию Сасскайнд добавил идею, что когда формируется пузырек, некоторым естественным процессом выбирается одна из громадного числа струнных теорий, чтобы управлять этой вселенной. Результатом является гигантское семейство вселенных, каждая из которых управляется струнной теорией, хаотически выбранной из ландшафта теорий. Где-нибудь в этой так называемой мультивселенной имеется любая возможная теория из ландшафта. Я нахожу прискорбным, что Сасскайнд и другие воспользовались антропным принципом, поскольку некоторое время назад было осознано, что это очень убогое основание, чтобы делать на нем науку. Поскольку каждая возможная теория управляет некоторой частью мультивселенной, мы можем сделать очень мало предсказаний. Нетрудно увидеть, почему. Чтобы сделать предсказание в теории, которая постулирует гигантское семейство вселенных, удовлетворяющих хаотически выбираемым законам, мы должны были бы сначала записать все вещи, которые мы знаем о нашей собственной вселенной. Эти вещи будут применимы также и к некоторому числу других вселенных, и мы можем обозначить это подмножество вселенных, где указанные факты верны, как возможно правильные вселенные. Все, что мы знаем, это что наша вселенная является одной из возможно правильных вселенных. Задав, что семейство вселенных произведено посредством хаотического распределения фундаментальных законов природы между ними, мы можем узнать еще немного. Мы можем сделать новое предсказание, только если каждая или почти каждая возможно правильная вселенная имеет свойство, не входящее в список свойств, которые мы уже наблюдаем в нашей собственной вселенной. Например, предположим, что в почти каждой возможно правильной вселенной большинство резонансных колебаний подчиняется закону С. Тогда в высшей степени вероятно, что вселенная, случайно выбранная из возможно правильных вселенных, будет резонировать по закону С. Поскольку мы ничего не можем узнать о нашей собственной вселенной, за исключением того, что это возможно правильная вселенная, мы можем предсказать с высокой вероятностью, что наша вселенная тоже подчиняется закону С. Проблема в том, что, поскольку распределение теорий среди всех вселенных предполагается хаотичным, имеется очень мало свойств, подобных этому. Наиболее вероятно, раз уж мы перечислили свойства, которые мы наблюдаем в нашей собственной вселенной, оставшиеся свойства, которые любая вселенная может иметь, будут распределены хаотически среди других возможно правильных вселенных. Таким образом, мы не можем сделать никаких предсказаний. То, что я описал, космологи называют cлабым антропным принципом. Как указывает название, единственная вещь, которую мы можем узнать о нашей вселенной, это что она поддерживает разумную жизнь; следовательно, любая возможно правильная вселенная должна быть местом, где разумная жизнь смогла бы существовать. Сасскайнд и другие утверждают, что этот принцип совсем не нов. Например, как нам объяснить факт, что мы находимся на планете, расположенной так, что температура находится в пределах, в которых вода жидкая? Если мы уверены, что имеется только одна планета во вселенной, мы должны расценить этот факт как приводящий в замешательство. У нас появляется соблазн склониться к вере в необходимость разумного создателя. Но раз уж мы знаем, что имеется огромное число звезд и множество планет, мы понимаем, что только случайно тут будут планеты, благоприятствующие жизни. Следовательно, мы не удивляемся, находясь на одной из них. Однако имеется большая разница между планетной аналогией и космологической ситуацией, которая в том, что мы не знаем ни одной вселенной, за исключением нашей собственной. Существование семейства других вселенных есть гипотеза, которая не может быть подтверждена прямым наблюдением; поэтому она не может быть использована в целях объяснения. Верно, что если имеется семейство вселенных со случайно распределенными законами, мы не должны быть удивлены, находясь в одной, где мы можем жить. Но факт, что мы находимся в биологически благоприятной вселенной, не может быть использован для подтверждения теории, что имеется огромное семейство вселенных. Имеется контраргумент, который мы можем проиллюстрировать на примере планет. Допустим, что было бы невозможно наблюдать ни одну другую планету. Если мы отсюда делаем вывод, что, фактически, имеется только одна планета, это заставит нас поверить в нечто весьма маловероятное, а именно, что единственная существующая планета биологически благоприятна. С другой стороны, если мы предположим, что имеется много планет с хаотическими свойствами, даже если мы никогда не наблюдаем их, тогда вероятность, что некоторые из них благоприятны для жизни, намного повышается - фактически, она приближается к 1. Следовательно, это доказывает, что намного более вероятно, что имеется много планет, чем только одна единственная. Но этот, очевидно, сильный аргумент ошибочен Сценарий множества ненаблюдаемых вселенных играет ту же самую логическую роль, как и сценарий разумного создателя. Каждый обеспечивает непроверяемые гипотезы, которые, если они верны, делают нечто маловероятное кажущимся вполне вероятным. Часть причины, по которой эти аргументы ошибочны, в том, что они полагаются на несформулированное предположение - что мы имеем в руках полный список альтернатив. Возвращаясь к планетной аналогии, мы не можем предотвратить возможность, что истинное объяснение пригодности нашей планеты для жизни возникнет когда-нибудь в будущем. Ошибочность двух аргументов в том, что оба сравнивают единственную возможность объяснения - но непроверяемую - с установкой, что нет возможного объяснения. Конечно, только при этих двух выборах объяснение кажется более рациональным, чем необъяснимая невероятность. За сотни лет мы получили хорошие основания для уверенности, что имеется очень много планет, поскольку имеется очень много звезд, - а недавно мы подтвердили существование внесолнечных планет непосредственным наблюдением. Так что мы уверены в многопланетном объяснении пригодности нашей планеты для жизни. Но когда речь идет о пригодности для жизни нашей вселенной, мы имеем, по меньшей мере, три возможности: 1. Наша вселенная одна из гигантской коллекции вселенных с хаотическими законами. 2.Имеется разумный создатель. 3.Имеется до сегодняшнего дня неизвестный механизм, который как объяснит пригодность нашей вселенной для жизни, так и сделает проверяемые предсказания, с помощью которых это объяснение можно будет подтвердить или фальсифицировать. При том, что первые две возможности принципиально не проверяемы, самым рациональным было бы придерживаться третьей возможности. В самом деле, это единственная возможность, которую мы должны рассматривать как ученые, поскольку принятие одной из двух первых будет означать конец нашей сферы деятельности. Некоторые физики утверждают, что слабый антропный принцип должен быть принят всерьез, поскольку он приводил в прошлом к истинным предсказаниям. Я говорю здесь о некоторых людях, которыми я больше всего восхищаюсь, - не только о Сасскайнде, но также и о Стивене Вайнберге, физике, который, как вы можете вспомнить из главы 4, вместе с Абдусом Саламом объединил электромагнитные и слабые ядерные силы. Тем огорчительнее мне заключить, что в каждом случае, куда я заглянул, утверждения были обоснованы неверно. Рассмотрим, например, следующее утверждение о свойствах ядер углерода, базирующееся на исследованиях, проведенных в 1950е великим британским астрофизиком Фредом Хойлом. Это утверждение часто принимают за демонстрацию того, что реальные физические предсказания могут быть основаны на антропном принципе. Утверждение начинается с наблюдения, что для существования жизни должен быть углерод. В самом деле, углерод есть в изобилии. Мы знаем, что он не мог быть создан при Большом Взрыве, поэтому мы знаем, что он должен был быть сделан в звездах. Хойл заметил, что углерод мог бы сформироваться в звездах, только если бы существовало определенное резонансное состояние ядра углерода. Он сообщил это предсказание группе экспериментаторов, которые и нашли его. Успех предсказания Хойла иногда используется как поддержка эффективности антропного принципа. Но аргумент о жизни в начале предыдущего абзаца не имеет логической связи с последней частью абзаца. Хойл сделал следующее: он вывел из наблюдений, что вселенная полна углерода, заключение о необходимости наличия некоторого процесса, с помощью которого весь этот углерод был сделан. Тот факт, что мы и другие живые организмы сделаны из углерода, не является необходимым для его утверждения. Другой аргумент, часто приводимый в поддержку антропного принципа, заключается в предсказании по поводу космологической константы, сделанном в знаменитой статье Стивена Вайнберга в 1987. В ней он обратил внимание, что космологическая константа должна быть меньше определенной величины, в противном случае вселенная расширялась бы слишком быстро, чтобы могли сформироваться галактики.[62] Поскольку мы наблюдаем, что вселенная полна галактик, космологическая константа должна быть меньше этой величины. И она меньше, как и должно быть. Это совершенно хорошая наука. Но Вайнберг обсудил этот приемлемый научный аргумент дальше. Он сказал, что, предположим, имеется мультивселенная и предположим, что величины космологической константы распределены среди входящих в нее вселенных хаотически. Тогда среди возможно правильных вселенных типичная величина космологической константы будет порядка величины, максимально возможной для согласования с формированием галактик. Поэтому, если сценарий мультивселенной верен, мы должны ожидать, что космологическая константа имеет настолько большую величину, насколько она может быть, чтобы все еще допустить формирование галактик. Когда Вайнберг опубликовал это предсказание, была общая уверенность в том, что космологическая константа должна быть равна нулю. Так что было впечатляющим, что его предсказание реализовалось грубо в пределах фактора 10. Однако, когда новые результаты заставили более тщательно проверить установки Вайнберга, возникли некоторые проблемы. Вайнберг рассматривал семейство вселенных, в которых только космологическая константа была хаотически распределена, тогда как все другие параметры принимались фиксированными. Вместо этого он должен был усреднить по всем членам мультивселенной, согласующимся с формированием галактик, позволяя всем параметрам изменяться. Используя этот способ, получим, что предсказание величины космологической константы оказывается намного больше. Это иллюстрирует устойчивую проблему с рассуждениями такого типа. Если ваш сценарий содержит хаотически распределенные параметры, из которых вы можете наблюдать только один набор, вы можете получить широкий диапазон различных предсказаний в зависимости от точности предположений, которые вы можете сделать о неизвестном, ненаблюдаемом семействе других наборов. Например, каждый из нас является членом многих сообществ. Во многих из них мы являемся типичными членами, но во многих других мы нетипичны. Предположим, что в моей авторской биографии на обложке книги все, что я напишу, это что я являюсь типичной персоной. Как много вы информации сможете вывести обо мне? Имеется много других случаев, в которых некоторые версии слабого антропного принципа могут быть проверены. В рамках стандартной модели физики элементарных частиц имеются константы, которые просто не имеют величин, которые, как мы могли бы ожидать, они должны иметь, если они выбираются хаотическим распределением среди семейства возможно правильных вселенных. Мы могли бы ожидать, что массы кварков и лептонов, за исключением их первого поколения, должны были бы быть распределены хаотически, но между ними наблюдаются соответствия. Мы могли бы ожидать, что некоторые симметрии элементарных частиц должны были бы быть нарушены сильным ядерным взаимодействием в большей степени, чем они нарушены на самом деле. Мы могли бы ожидать распад протона с намного более быстрым темпом, чем это позволяют настоящие экспериментальные ограничения. Фактически, мне не известны успешные предсказания, которые были сделаны через рассуждения о мультивселенной с хаотическим распределением законов. Но как насчет третьей возможности, что объяснение пригодности нашей вселенной для жизни основано на проверяемых гипотезах? В 1992 я поставил на обсуждение предположение именно этого вида. Чтобы сделать проверяемое предсказание из теории мультивселенной, семейство вселенных должно быть далеко не хаотичным. Оно должно быть сложно структурированным, так что имеются свойства, которыми обладают все или большинство вселенных и которые не должны ничего делать с нашим существованием. Отсюда мы можем предсказать, что наша вселенная обладает этими свойствами. Один из способов получить такую теорию заключается в подражании способу естественного отбора, работающему в биологии. Я придумал такой сценарий в конце 1980х, когда стало ясно, что теория струн может перейти в очень большое число версий. Из книги биологов-эволюционистов Ричарда Доукинса и Линна Маргулиса я узнал, что у биологов есть модель эволюции, которая базируется на пространстве возможных фенотипов, именуемом пригодными ландшафтами. Я усвоил идею и термин и придумал сценарий, в котором вселенные рождаются из внутренних частей черных дыр. В своей книге Жизнь космоса (1997) я обстоятельно размышлял о следствиях этой идеи, так что я не буду здесь вдаваться в ее детали, за исключением замечания о том, что эта теория, которую я назвал космологический естественный отбор, делает настоящие предсказания. В 1992 я опубликовал два из них, и они с тех пор держатся, хотя они могли бы быть опровергнуты множеством экспериментов, проделанных за это время. Это (1) что не должно существовать более массивных нейтронных звезд, чем 1,6 масс Солнца, и (2) что спектр сгенерированных инфляцией флуктуаций - и, возможно, наблюдаемый космический микроволновой фон - должны согласовываться с простейшей из возможных версией инфляции, с одним параметром и одним полем инфлатона.[63] Сасскайнд, Линде и другие критиковали идею космологического естественного отбора, поскольку они утверждали, что множество вселенных, созданных вечной инфляцией будет превосходить любое число сделанных через черные дыры. Чтобы рассматривать это возражение, важно знать, насколько надежным является предсказание вечной инфляции. Обстоятельства временами складываются так, что тяжело иметь инфляцию совсем без вечной инфляции. Тот факт, что некоторые предсказания инфляционной космологии подтвердились, принимается как свидетельство в ее пользу. Однако, двигаясь от инфляции к вечной инфляции, предполагается, что там нет препятствий для распространения заключений, связанных с нашей сегодняшним космологическим масштабом, на безмерно большие масштабы. С этим имеется две проблемы: первая в том, что экстраполяция на большие масштабы в настоящее время подразумевает в некоторых моделях инфляции экстраполяцию к слишком маленьким масштабам в ранней вселенной. (Я не буду объяснять этого здесь, но это верно для нескольких инфляционных моделей.) Это означает, что, чтобы получить инфляционную вселенную, безмерно большую, чем наша современная вселенная, мы должны распространить описание ранней вселенной до времен безмерно меньших, чем планковское время, до которого эффекты квантовой гравитации доминировали над эволюцией вселенной. Это проблематично, поскольку обычное описание инфляции предполагает, что пространство-время является кассичским и в нем нет эффектов квантовой гравитации; более того, некоторые теории квантовой гравитации предсказывают, что не бывает временного интервала, более короткого, чем планковское время. Вторая, имеются указания, что предсказания инфляции не удовлетворяются на самых больших масштабах, которые мы в настоящее время можем наблюдать (см. главу 13). Поэтому экстраполяция от инфляции к вечной инфляции попадает как в теоретические, так и в наблюдательные неприятности, так что она не кажется сильным возражением против космологического естественного отбора. Несмотря на факт, что антропный принцип не приводит ни к каким реальным предсказаниям, и маловероятно, что приведет, Сасскайнд, Вайнберг и другие ведущие теоретики приняли его как сигнал о революции не только в физике, но и в нашей концепции того, что такое физическая теория. Вайнберг заявил в ндавнем эссе: Самые большие успехи в истории науки были отмечены открытиями по поводу природы, но с определенного поворотного пункта мы делаем открытия по поводу самой науки. ... Теперь мы можем быть в новом поворотном пункте, радикальное изменение в котором мы принимаем как допустимое основание физичской теории. ... Чем большее число возможных величин физических параметров обеспечивается струнным ландшафтом, тем больше струнная теория оправдывает антропное обоснование как новый базис физических теорий: Любые ученые, которые изучают природу, должны жить в части ландшафта, где физические параметры принимают значения, подходящие для появления жизни и ее эволюции в ученых.[64] Стивен Вайнберг заслуженно почитается за его вклад в стандартную модель, и его письменные работы обычно выделяются убедительностью и сдержанной рациональностью. Но просто оценим, что, раз уж вы основываетесь на подобном, вы теряете способность отнести свою теорию к тому виду тестов, которые, как снова и снова показывает история науки, требуются для отсеивания правильных теорий из кучи красивых, но неверных. Чтобы делать это, теория должна предлагать особые и точные предсказания, которые можно либо подтвердить, либо отвергнуть. Если имеется высокий риск не получить подтверждения, то подтверждение гораздо выше ценится. Если нет ни того, ни этого риска, тогда нет способа продолжать науку. Мне кажется, что полемика о том, как наука сталкивается с недавним огромным струнным ландшафтом, сводится к трем возможностям: 1.Теория струн верна и хаотическая мультивселенная верна, так что, чтобы приспособиться к ним, мы должны поменять правила, которыми управляется научная деятельность, поскольку в соответствии с обычной научной этикой мы не должны позволять себе верить в теорию, которая не делает однозначных предсказаний, на основании которых ее можно было бы подтвердить или опровергнуть. 2.В конце концов будет найден некотрый путь, чтобы вывести истинные и проверяемые предсказания из теории струн. Это может быть сделано либо через демонстрацию, что реально имеется однозначная теория, или через другую, нехаотическую теорию мультивселенной, которая приведет к подлинным проверяемым предсказаниям. 3.Теория струн не является правильной теорией природы. Природу лучше описывать другой теорией, которая должна быть еще открыта или должна быть еще принята, которая приводит к истинным предсказаниям, которые эксперимент в итоге подтвердит. Для меня поразительным является число различных ученых, кто кажется не в состоянии принять возможность того, что как теория струн, так и гипотеза хаотической мультивселенной являются ложными. Вот подборка соответствующих комментариев: "Антропный принцип настолько сильно идет против исторических целей теоретической физики, что я долго сопротивлялся ему даже после осознания его вероятной необходимости. Но сейчас я побежден." - ДЖОЗЕФ ПОЛЧИНСКИ "Те, кому не нравится антропный принцип, просто не хотят признавать очевидного." - АНДРЕЙ ЛИНДЕ "Возможное существование гигантского ландшафта является восхитительным развитием в теоретической физике, которое заставляет нас радикально переосмыслить многие из наших представлений. Мое инстинктивное чувство говорит, что это вполне может быть верным." - НИМА АРКАНИ-ХАМЕД (Гарвардский уиверситет) "Я думаю, вполне правдоподобно, что ландшафт реален." - МАКС ТЕГМАРК (Массачусетский технологический институт) Даже Эдвард Виттен кажется поставленным в тупик: "Я в самом деле не могу сказать ничего резкого. Я думаю, мы узнаем больше."[65] Среди процитированных здесь нет ни одной личности, кем бы я глубоко не восхищался. Тем не менее, мне кажется, что любая непредубежденная персона, не запятнавшая себя иррациональной верой в теорию струн, должна бы ясно видеть эту ситуацию. Теория не способна сделать ни одного предсказания, через которые она может быть проверена, а некоторые из ее сторонников вместо того, чтобы согласиться с этим, пытаются изменить правила так, что их теория не будет нуждаться в проведении обычных испытаний, которым мы подвергаем научные идеи. Кажется рациональным отвергнуть эти притязания и настоять на том, что мы не должны изменять правила науки только чтобы сохранить теорию, которая не смогла выполнить ожиданий, которые мы исходно к ней питали. Если теория струн не делает однозначных предсказаний для экспериментов и если она не объясняет по поводу стандартной модели физики частиц ничего такого, что ранее было загадочным, - оставляя в стороне очевидную установку, что мы должны жить во вселенной, где мы можем жить, - не кажется, что она может оказаться очень хорошей теорией. История науки видела множество падений многообещающих теорий. Почему это не еще один такой случай? Мы с прискорбием пришли к заключению, что теория струн не делает новых, точных и фальсифицируемых предсказаний. Но, однако, она делает некоторые изумительные утверждения о мире. Смогут ли эксперимент или наблюдение однажды обнаружить доказательство для любого из этих удивительных свойств? Даже если нет определенных предсказаний за и против - предсказаний такого сорта, которые могли бы убить или подтвердить теорию, - не можем ли мы увидеть доказательство свойства, которое является центральным для струнного взгляда на природу. Самым очевидным нововведением теории струн являются сами струны. Если бы мы могли исследовать струнный масштаб, не было бы проблем увидеть обильные свидетельства струнной теории, если она верна. Мы могли бы увидеть указания на то, что фундаментальные объекты одномерны, а не подобны точкам. Но мы не в состоянии провести эксперименты на ускорителях в пределах требуемых энеригий. Есть ли иной путь, следуя которым, мы могли бы обнаружить сами струны? Могут ли струны быть как-то инициированы, чтобы стать больше, так что мы смогли бы их увидеть? Один из таких сценариев был недавно предложен Эдмундом Копелэндом, Робертом Майерсом и Джозефом Полчински. При определенных очень специальных предположениях по поводу космологии может оказаться правильным, что некоторые очень длинные струны были созданы в ранней вселенной и продолжают существовать.[66] Расширение вселенной расширило их до таких размеров, что сейчас их длина составляет миллионы световых лет. Это явление не ограничивается теорией струн. Некоторое время популярная теория о формировании галактик предполагала, что они начинаются от присутствия гигантских струн электромагнитного потока, оставшихся со времен Большого Взрыва. Эти космические струны, как их называют, никогда не работали с теорией струн, они были следствиями структуры калибровочных теорий. Они являются аналогами квантованных линий магнитного потока в сверхпроводниках, и они могут формироваться в ранней вселенной как следствие прохождения вселенной через фазовые переходы при ее охлаждении. Сегодня мы имеем определенные свидетельства из космологических наблюдений, что такие струны не были главной составляющей в формировании структуры вселенной, но несколько космический струн после Большого Взрыва все еще могли бы остаться. Астрономы ищут их через поиск их влияния на свет от удаленных галактик. Если космическая струна проходит через линию зрения, соединяющую наш взгляд и удаленную галактику, гравитационное поле струны будет действовать как линза, удваивая изображение галактики особым образом. Другие объекты, такие как темная материя или другие галактики, могут иметь сходный эффект, но астрономы знают, как провести различия между генерируемыми ими образами и изображениями, которые производятся космической струной. Недавно было сообщение, что такая линза могла быть обнаружена. Ее оптимистично назвали CSL-1 (Cosmic String Lens - линза на космической струне), но, когда на нее посмотрели через Космический телескоп Хаббла, оказалось, что это две близко расположенные друг к другу галактики.[67] Что нашли Копелэнд и его коллеги, так это то, что при определенных специальных условиях фундаментальные струны, растянутые расширением вселенной до огромных длин, могли бы иметь сходство с космическими струнами. Так что их можно было бы наблюдать через их действие, подобное линзам. Такие фундаментальные космические струны могли бы также быть очень большими излучателями гравитационных волн, которые могли бы наблюдаться на LIGO (Laser Interferometer Gravitational-wave Observatory - обсерватория гравитационных волн на лазерных интерферометрах). Предсказания этого вида дают нам некоторую надежду, что теория струн однажды может быть проверена через наблюдения. Хотя открытие космических струн само по себе не может проверить теорию струн, поскольку несколько других теорий также предсказывают существование таких струн. Неудача в поиске таких струн не может привести к фальсификации теории струн, поскольку условия, при которые космические струны существуют, были выбраны специально, и нет причин думать, что они могут существовать в нашей вселенной. Кроме существования струн есть три другие общие особенности струнного мира. Все осмысленные струнные теории согласуются с тем, что имеются дополнительные измерения, что все силы объединяются в одну силу и что существует суперсимметрия. Так что, даже если мы не имеем детальных предсказаний, мы можем увидеть, сможет ли эксперимент подтвердить эти гипотезы. Поскольку они независимы от теории струн, нахождение доказательств для любой из них не доказывает, что теория струн верна. Но противоположное здесь не имеет места: если мы узнаем, что нет суперсимметрии, или нет высших измерений или нет объединения всех сил, тогда теория струн является неверной. Начнем с дополнительных измерений. Мы не в состоянии их увидеть, но мы определенно можем поискать их проявления. Одним из путей сделать это является поиск дополнительных сил, которые предсказываются всеми теориями с высшими измерениями. Эти силы передаются полями, которые заключают в себе геометрию дополнительных измерений. Такие поля должны быть здесь, поскольку вы не можете ограничить дополнительные измерения, чтобы они производили только те поля и силы, которые мы до сегодняшнего дня наблюдаем. Силы, которые возникают из таких полей, ожидаются грубо столь же сильными, как и гравитация, но они могут отличаться от гравитации одним или многими свойствами: они могут иметь конечную область распространения, и они могут не взаимодействовать одинаково со всеми формами энергии. Некоторые текущие эксперименты экстраординарно чувствительны к таким гипотетическим силам. Около десяти лет назад один эксперимент показал предварительное свидетельство для такой силы, которую назвали пятой силой. Дальнейшие эксперименты не поддержали это утверждение, и на настоящий момент нет доказательств для таких сил. Струнные теоретики обычно предполагали, что дополнительные измерения мизерны, но несколько предприимчивых физиков поняли в 1990х, что это не являлось обязательным условием - что дополнительные измерения могли бы быть большими или даже бесконечными. Это возможно в сценарии миров на бране. В такой картине наше трехмерное пространство на самом деле является браной - то есть чем-то, подобным мембране, но трехмерной - подвешенной в мире с четырьмя или более измерениями пространства. Частицы и силы стандартной модели - электроны, кварки, протоны вместе с силами, которыми они взаимодействуют, - ограничены в пределах трехмерной браны, составляющей наш мир. Так что, используя только эти силы, вы не сможете увидеть свидетельств дополнительных измерений. Единственное исключение составляет гравитационная сила. Гравитация, будучи универсальной, распространяется через все измерения пространства. Этот вид сценария был впервые сконструирован в деталях тремя физиками, работающими в SLAC (Стэнфордском Линейном Ускорительном Центре), Нимой Аркани-Хамедом, Гиа Двали и Савасом Диопоулосом. На удивление, они нашли, что дополнительные измерения могли бы быть совсем большими без конфликта с известными экспериментами. Если имеется два дополнительных измерения, они могли бы быть порядка миллиметра в поперечнике.[68] Главный эффект от добавления таких больших дополнительных измерений в том, что гравитационная сила в четырех- или пятимерном мире, оказывается, может быть намного сильнее, чем это проявляется на трехмерной бране, так что эффекты квантовой гравитации происходят на намного большем масштабе длин, чем всегда ожидалось. В квантовой теории больший масштаб длин означает меньшую энергию. Делая дополнительные измерения размером в миллиметр, можно понизить масштаб энергий, при котором должны быть видны эффекты квантовой гравитации - от планковской энергии, которая есть 1019 ГэВ, всего лишь к 1000 ГэВ. Это разрешает один из самых стойких вопросов по поводу параметров стандартной модели, а именно: почему планковская энергия на столько порядков величины больше, чем масса протона? Но что на самом деле возбуждает, так это то, что это делает квантово-гравитационные явления наблюдаемыми в диапазоне, который достижим на Большом Адронном Коллайдере (LHC), запускающемся в 2007*. Среди этих эффектов могло бы быть рождение квантовых черных дыр в соударениях элементарных частиц. Это было бы значительное открытие. Другой вид сценария мира на бране был разработан Лайзой Рэндалл из Гарварда и Раманом Сундрумом из Университета Джонса Гопкинса. Они нашли, что дополнительные измерения могли бы быть бесконечными по размерам, пока в высокоразмерном мире имелась отрицательная космологическая константа.[69] Поразительно, это также согласуется со всеми наблюдениями на сегодняшний день и даже делает предсказания для новых наблюдений. Это весьма смелые идеи и забавно подумать о них, и я глубоко восхищаюсь их изобретателями. Как упоминалось, мне с трудом даются сценарии мира на бране. Они уязвимы для тех же проблем, которые приговорили оригинальные попытки объединения через высшие размерности. Сценарии мира на бране работают, только если вы делаете специальные предположения о геометрии дополнительных измерений и способе, которым трехмерная поверхность, которая является нашим миром, помещается внутри них. В добавление ко всем проблемам, от которых страдали старые теории Калуцы-Кляйна, имеются новые проблемы. Если может быть одна брана, плавающая в высокоразмерном мире, почему их не может быть много? И если имеются другие, то как часто они сталкиваются? В самом деле, имеются преложения, по которым Большой Взрыв возник из-за столкновения миров на бранах. Но, если это может произойти один раз, почему с тех пор это больше не происходило? Прошло около 14 миллиардов лет. Ответ может быть в том, что браны встречаются редко, но в этом случае мы опять получаем тончайше настроенные условия. Помимо этих проблем, я настроен скептически, поскольку эти сценарии зависят от специального выбора фоновой геометрии, а это противоречит главному открытию Эйнштейна, как изложено в его ОТО, что геометрия пространства-времени является динамической и что физика должна быть выражена независимым от фона способом. Тем не менее, это наука, какая она и должна быть: смелые идеи, которые можно протестировать возможными экспериментами. Однако, поясним. Если любое из предсказаний миров на бране окажется верным, это не будет означать подтверждения теории струн. Теории миров на бране стоят особняком, они не нуждаются в струнной теории. Также нет полностью разработанного понимания модели мира на бране в рамках теории струн. Наоборот, если ни одно из предсказаний миров на бране не обнаружится, это не фальсифицирует теорию струн. Миры на бране являются просто одним из способов, которым могли бы проявиться допонительные измерения теории струн. Второе общее предсказание теории струн в том, что мир суперсимметричен. Здесь тоже нет фальсифицируемых предсказаний, поскольку мы знаем, что суперсимметрия, если она верно описывает мир, который мы видим, должна быть нарушена. В главе 5 мы отмечали, что суперсимметрия может быть обнаружена на LHC. Это возможно, но при этом не гарантировано, даже если суперсимметрия верна. К счастью, имеется другой способ протестировать суперсимметрию. Одна из возможностей включает темную материю. Во многих суперсимметричных расширениях стандартной модели самые легкие новые частицы стабильны и не заряжены. Эти новые частицы могли бы быть темной материей. Они должны будут взаимодействовать с обычной материей, но только через гравитацию и слабые ядерные силы. Такие частицы называют ВИМПы (WIMPs - weakly interacting massive particles - слабо взаимодействующие массивные частицы), и готовится несколько экспериментов для их обнаружения. Эти детекторы используют идею, что частицы темной материи будут взаимодействовать с обычной материей через слабые силы. Это делает их очень похожими на тяжелые версии нейтрино, которые тоже взаимодействуют с веществом только через гравитацию и слабые силы. К несчастью, поскольку суперсимметричные теории имеют так много свободных параметров, нет особого предсказания, что за массу должны иметь ВИМПы или точно, насколько сильно они должны взаимодействовать. Но, если темная материя на самом деле состоит из них, мы можем вывести, какой диапазон допустим для их масс, предполагая, что они играют ту роль в формировании галактик, как мы думаем. Предсказанный диапазон совпадает с тем, что теория и эксперимент предполагают для легчайших суперпартнеров. Экспериментаторы ищут ВИМПы, используя детекторы, подобные тем, которые использовались для обнаружения солнечных нейтрино и нейтрино, приходящих от удаленных сверхновых. Были проведены всесторонние поиски, но до сегодняшнего дня ВИМПы не найдены. Это, конечно, не окончательно - это означает только, что, если они существуют, они взаимодействуют слишком слабо, чтобы инициировать отклик детектора. Можно сказать, что если они взаимодействуют с веществом так же сильно, как нейтрино, они должны были бы быть видны к этому времени. Тем не менее, открытие суперсимметрии любым способом было бы впечатляющим триумфом для физики. Главная вещь, которую надо держать в уме, что даже если теория струн требует, чтобы мир был суперсимметричным на некотором масштабе, она не дает предсказания, что это за масштаб. Таким образом, если суперсимметрия не будет найдена на LHC, это не фальсифицирует теорию струн, поскольку масштаб, на котором она может быть обнаружена, полностью подгоняется. С другой стороны, обнаружение суперсимметрии не подтвердит теорию струн. Имеются обычные теории, которые требуют суперсимметрию, такие как минимальное суперсимметричное расширение стандартной модели. Даже среди квантовых теорий гравитации суперсимметрия не однозначно связана с теорией струн; например, альтернативный подход, именуемый петлевая квантовая гравитация, полностью согласуется с суперсимметрией. Теперь мы подошли к третьему общему предсказанию теории струн: что все фундаментальные силы становятся едиными на некотором масштабе. Как и в других случаях, эта идея шире теории струн, так что ее подтверждение не докажет, что теория струн верна; на самом деле, теория струн допускает несколько возможных форм объединения. Но имеется одна форма, которая, как уверены большинство теоретиков, представляет великое объединение. Как мы обсуждали в главе 3, великое объединение делает общее предсказание, до сих пор не верифицированное, что протоны должны быть нестабильны и должны распадаться на некотором временном масштабе. Эксперименты искали распад протона и не нашли его. Эти результаты (или их отсутствие) убивают определенные теории великого объединения, но не общую идею. Однако, неудача поисков распада протона остается ограничением на возможные теории, включая суперсимметричные теории. Большое число теоретиков верят, что все три из этих общих предсказаний будут подтверждены. Следовательно, экспериментаторы предпринимают огромные усилия в поиске свидетельств, которые поддерживают эти предсказания. Не является преувеличением сказать, что сотни карьер и сотни миллионов долларов были исчерпаны за последние тридцать лет в поиске знаков великого объединения, суперсимметрии и дополнительных измерений. Несмотря на эти попытки, не было обнаружено доказательств ни одной из этих гипотез. Подтверждение каждой из этих идей, даже если оно не могло бы быть принято за прямое подтверждение теории струн, было бы первым указанием, что, по меньшей мере, некоторая часть комплексной сделки, которую требует теория струн, скорее, подводит нас ближе к реальности, чем удаляет от нее. |
||
|