"Борис Воронцов-Вельяминов. Лаплас ("Жизнь замечательных людей" #119) " - читать интересную книгу автораследов, как на родине философа, развитие научного мышления шло более
самостоятельным путем и увенчалось гениальными работами Ньютона. В 1687 году появилось его сочинение "Математические начала натуральной философии", которое с небывалой дотоле ясностью и четкостью определило новое научное мировоззрение. Здесь давалось исчерпывающее, на первый взгляд, об'яснение величайшего множества явлений природы, исходя из немногих четких принципов. Кроме того, тут же давался и новый метод научного исследования природы, метод индукции.* Этой работой Ньютона были предопределены, как известно, основные линии дальнейшего развития всей астрономии и физики вплоть до начала XX века и отчасти даже позднее. Понятие причинности всех явлений природы стало после этого на твердую почву и вдохновило исследователей на дальнейшее углубление полученных результатов. Успехи Ньютона в значительной мере определялись тем что ему, независимо от Лейбница и почти одновременно с ним, удалось изобрести могущественное средство математического анализа - исчисление бесконечно малых. Другими словами, Ньютон изобрел высшую математику - основы дифференциального и интегрального исчислений. Только при посредстве этого метода Ньютон мог шагнуть гораздо дальше, чем его предшественники. С тех пор дифференциальное и интегральное исчисления являются незаменимым способом математической трактовки различных явлений природы. ______________ * Под индукцией понимается метод рассуждения или исследования, идущий от частного к общему, от отдельных фактов и явлений к общим выводам и законам. как говорят, эмпирически, учитывая эллиптичность планетных орбит, Ньютон доказал, что планеты испытывают ускорение, всегда направленное к Солнцу и изменяющееся обратно пропорционально квадрату расстояния планет от Солнца. Так же изменяется ускорение и в движении одной и той же планеты, когда при движении по эллипсу меняется ее расстояние от Солнца. Пользуясь сформулированными им понятиями массы и силы, Ньютон доказал, что сила взаимного тяготения между планетой и Солнцем пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Ньютон доказал также - и это чрезвычайно важно, - что если между двумя телами действует сила тяготения, то тело с меньшей массой должно двигаться около тела с большей массой именно по законам Кеплера, а не как-либо иначе. Мало того, выведенные им законы движения под действием тяготения получили очень общий характер: те законы, которые открыл сам Кеплер, оказались лишь частным случаем этих, более общих законов. Таким образом, Ньютон установил законы: 1. Всякое тело под действием тяготения к другому (большей массы) должно описывать около него одно из конических сечений (рис. 2). Коническими сечениями являются кривые, получаемые от - пересечения поверхности конуса с плоскостью. В число их входят: круг, эллипс, парабола и гипербола (рис. 2), из которых две последние кривые не замкнуты. 2. Закон, устанавливающий, что площади, описываемые радиусом-вектором, пропорциональны времени, оказался справедливым при движении по любой из перечисленных кривых. 3. Выражение третьего закона Кеплера, связывающее размеры орбит и |
|
|