"Сергей Шилов. Механика времени" - читать интересную книгу авторадополняет число частицы как определенность соотношения. Дефиниция есть
фундаментальная процедура механики времени, обеспечивающая переход от имманентного исчисления (математического анализа) к трансцендентальному исчислению (синтетическому исчислению) на основе представления о трансцендентном исчислении. Каждому числу, независимо от его числовой природы, необходимо "поставить в соответствие" цифру, формализм которой связан с "простым значением" числа сообразно закону простых чисел - так переформулируется принцип Де Бройля в механике времени. Применение Бором идеи квантования энергии к теории строения атома, планетарная модель которого следовала из результатов опытов Э. Резерфорда, есть подход к осознанию истинного состояния материи как численности. Если фундаментальной категорией представимости материи является состав (строение, частица), то фундаментальной категорией представимости численности является постав ("внешний вид" числа, "поворот") особая картина, свойственная отглагольной связке "есть". Как известно, для "объяснения устойчивости атомов" Бор предположил, что из всех орбит, допускаемых ньютоновой механикой для движения электрона в электрическом поле атомного ядра, реально осуществляются лишь те, которые удовлетворяют определенным условиям квантования. Бор постулировал, что, находясь на определенном уровне энергии (т. е. совершая допускаемое условиями квантования орбитальное движение), электрон не излучает световых волн. Излучение происходит лишь при переходе электрона с одной орбиты на другую, при этом рождается квант света с энергией, равной разности энергий уровней, между которыми осуществляется переход. Мы видим здесь механистическую модель числа ("деревянный автомат": с одной стороны, использовалась ньютонова механика, с другой - привлекались классической электродинамике). Речь в механике времени идет непосредственно о числе, о генезисе и структуре числа, выраженных соответственно в двух частях формулы единицы. 22. Гейзенберг построил такую формальную схему, в которой вместо координат и скоростей электрона фигурировали абстрактные алгебраические величины - матрицы (матричная механика). После появления уравнения Шредингера была показана математическая эквивалентность волновой (основанной на уравнении Шредингера) и матричной механики. После этого осмысление в области оснований квантовой механики остановилось: в 1926 М. Борн дал вероятностную интерпретацию волн де Бройля, закрепляющую "бесконечный интеллектуальный тупик" как спекулятивную "форму истинности" квантовой механики. Входом в этот тупик послужило "осознание того факта, что движение электронов в атоме не описывается в понятиях классической механики, которое привело к мысли, что вопрос о движении электрона между уровнями несовместим с характером законов, определяющих поведение электронов в атоме, и что необходима новая теория, в которую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома". Необходима, на деле, новая теория, в которую входили бы все величины, относящиеся ко всем состояниям "атома", теория, раскрывающая "атом" как неполный формализм (схему структуры) числа, - необходима теория формализации. Гейзенберг вполне осознавал "промежуточное положении" соотношения неопределенностей как некоторой остановки (передышки) мышления в области оснований квантовой механики. Предсказание вероятностей различных процессов стало идентификацией |
|
|