"В.Н.Щеглов. Модели признаков смерти от злокачественных новообразований для населения," - читать интересную книгу авторабулевой функции Z = (0, 1), где 0 - нецелевые состояния и 1 - целевые. Далее
каждое состояние (строки в Х), которому задано определенное целевое значение Z, сравнивается со всей своей окрестностью нецелевых состояний, начиная с ближайших и строятся конъюнкции К' малого числа r открытых интервалов dx значений переменных для целевого состояния (в пределе, для весьма больших m dx непрерывно, континуально; r будем называть рангом конъюнкции К'). Итоговые К" (по всем целевым состояниям) вычисляются таким образом, чтобы К" были бы простыми импликациями, истинными формулами для Z, например: "если К", то Z = 1". Примем также (это наше семантическое соглашение), что вычисление К' относится к функции подсознания, а К" - к функции сознания. Далее вычисляются оценки Г для каждой К" (число состояний, где встречается данная К"). Затем строятся тупиковые дизъюнктивные формы (АМКЛ) для каждого из Z = 0, 1, ... в отдельности. Начиная с наибольшей Г отбираются К и объединяются логической связкой "или"; предварительно отбрасываются те из них, множества состояний которых ("покрытия", множества номеров строк) уже входят в объединение покрытий ранее отобранных К (т. е. строится тупиковая дизъюнктивная форма). В некоторых случаях требуется построение вероятностной модели. Для этого все частичные пересечения двух или более К обозначаются как новые К, оставшиеся множества и эти новые К вновь упорядочиваются по их Г, переиндексируются и подсчитываются итоговые Г и Г/m. Эти частоты в сумме дают единицу. Далее все вышеприведенные аналогичные операции совершаются и в отношении нецелевых состояний, целевым значением становится Z = 0. После вычисления модели обычно проводится ее интерпретация (обычно с помощью подходящих информационно-поисковых систем) - сопоставление с уже известными более общими теориями, в которые К входят как подмножества (поиск также контекст отдельных наиболее интересных итоговых К, входящих в тупиковую форму. Это замкнутые интервалы значений всех переменных, не включенных в данную К, т. е. только для "своих" Г строк-состояний (для "покрытия" К). Интерпретация контекста (вместе с К) соответствует возможному "объяснению" функций Z, также и несущественных переменных. При необходимости аналитического отображения логической модели производится аппроксимация всех подмножеств значений (х, у) для каждого К обобщенными рядами Эрмита или Фурье [1, 2, 14]. Будем считать, что мы потенциально имеем возможность отслеживать и сохранять в памяти компьютера весьма большие, но конечные массивы числовой содержательной информации, которая отображает доступный нам смысл исследуемого процесса. Во многих часто встречающихся случаях Y = (у1, у2, ... ) обычно является многокритериальной функцией Х (алгоритм см. в [1]). В более общем случае можно считать, что Х является массивом всей доступной информации, как бы некоторый текст (в динамике, по строкам), посредством которого исследуемый объект обменивается информацией с исследователем. Номера соответствующих переменных ("слов", столбцов массива Х), являются обычно некоторым ограниченным словарем, тезаурусом. При этом, вообще говоря, каждое слово из этого словаря можно задать в качестве функции-цели у относительно оставшейся части Х. Все дело заключается в том, в каком контексте (смысле) проводится исследование. Более того, иногда даже конкретная цель для исследователя не совсем ясна. В этом случае можно вычислить некоторое множество моделей для "обзорного" множества у и отобрать модель, для которой информационная энтропия меньше - практически, можно предпочесть модель, |
|
|