"Звезды: их рождение, жизнь и смерть" - читать интересную книгу автора (Шкловский Иосиф Самуилович)Глава 16 Остатки вспышек сверхновых — источники рентгеновского и радиоизлученияВ результате взрыва звезды, который наблюдается как явление сверхновой, вокруг нее образуется туманность, расширяющаяся с огромной скоростью: как правило, порядка 10 000 км/с. Большая скорость расширения есть главный признак, по которому остатки вспышек сверхновых отличаются от других туманностей, например, планетарных. Последние расширяются с довольно умеренной скоростью, порядка немногих десятков км/с, т. е. примерно с той же скоростью, которую следует ожидать при расширении горячего газа в пустоте (см. § 13). Иное дело остатки сверхновых: здесь все говорит о взрыве огромной мощности, разметавшем наружные слои звезды в разные стороны и сообщившем отдельным кускам выброшенной оболочки огромные скорости. Потом, спустя много сотен и тысяч лет, выброшенные при взрыве облака газа начнут тормозиться окружающей средой, с которой они взаимодействуют, их скорости начнут падать и снизятся до сотен и даже десятков километров в секунду. Еще задолго до этого не останется никаких видимых (т. е. наблюдаемых в оптическом диапазоне) следов взорвавшейся звезды. Но еще долгие тысячелетия и десятки тысяч лет будет существовать весьма своеобразная туманность, образовавшаяся при гигантской космической катастрофе — взрыве звезды. Пройдет, однако, сотня тысяч лет, и следы такой катастрофы в межзвездной среде почти сотрутся: остатки сверхновой полностью растворятся в этой среде. И только во многом еще загадочные Мы можем рассматривать вспышку сверхновой звезды как сильнейшее локальное возмущение окружающей ее межзвездной среды. Для этого совершенно необязательно знать, каковы были причины взрыва звезды и каковы конкретные особенности взрыва. Надо только знать полное количество энергии, выделившееся во время взрыва в форме кинетической энергии выброшенной газовой оболочки. Кроме того, необходимо знать плотность окружающей межзвездной среды. Аналогичную задачу для сильных взрывов в земной атмосфере (ныне, к счастью, запрещенных большинством стран) решил академик Л. И. Седов еще в 1945 г. Автор этой книги применил в 1960 г. решение Седова к задаче вспышки сверхновой звезды. Будем считать окружающую межзвездную среду однородной с постоянной плотностью газа
где
Из уравнений (16.1) можно получить скорость увеличения
Отсюда следует простое отношение:
Практическое значение этой формулы очень велико, так как она позволяет по измеренной скорости расширения остатков вспышки сверхновой (а это можно сделать, см. ниже), зная Необходимо подчеркнуть, что теория Седова неприменима к сравнительно ранней стадии возмущения межзвездной среды взрывом. На более поздних стадиях, которые вполне удовлетворительно описываются этой теорией, всякие следы облаков газа, выброшенных с огромной скоростью во время взрыва, уже исчезли. Они «растворились» в окружающем межзвездном газе, передав им свою энергию. Масса газа заключенного внутри сферы радиуса
Как мы уже подчеркивали выше, задача возмущения межзвездной среды взрывом сверхновой рассматривалась нами идеализированно. Например, не учитывалось магнитное поле, находящееся в межзвездной среде, а также давление релятивистских частиц, находящихся внутри расширяющейся туманности (см. ниже). Можно, однако, показать, что на адиабатической стадии расширения значение этих факторов не является определяющим. Гораздо большее значение имеет то обстоятельство, что, в отличие от нашей идеализированной схемы, межзвездная среда не является однородной. Это приводит к тому, что находящиеся в ней уплотнения будут «обжиматься» распространяющейся от взрыва ударной волной. От этого будут образовываться плотные газовые сгустки, зачастую вытянутой, «нитевидной» формы. Из-за высокой плотности газа в таких «нитях» они будут быстро охлаждаться до температуры в несколько десятков тысяч градусов и при этом станут наблюдаемы методами оптической астрономии. Таким образом, область взрыва будет окаймлена системой тонковолокнистых туманностей. Эти туманности распределены вокруг очага взрыва весьма неравномерно, отражая первоначальное распределение неоднородностей в межзвездной среде, окружающей взорвавшуюся звезду. Обнаруженные несколько десятилетий назад оптическими астрономами системы тонковолокнистых туманностей в созвездии Лебедя были первым свидетельством о существовании огромных возмущений межзвездной среды, обусловленных взрывами звезд. Такую интерпретацию тонковолокнистых туманностей впервые предложил известный голландский астроном Оорт, обратившими внимание на отсутствие горячих звезд, способных возбудить к свечению эти туманности «нормальным» образом, т. е. путем ультрафиолетового излучения. На рис. 16.2 и 16.3 приведено несколько наиболее исследованных тонковолокнистых туманностей. Система таких туманностей в созвездии Лебедя (рис. 16.2) имеет огромные угловые размеры — около 3°. Так как расстояние до этих туманностей известно (около 800 пс), линейный диаметр 2
Температура газа на периферии системы тонковолокнистых туманностей в созвездии Лебедя согласно формуле (16.1) должна быть около 3 миллионов кельвинов. Следует представить себе огромную радиусом в 20 пс оболочку, где межзвездный газ нагрет до такой высокой температуры, а в ней заключены сравнительно холодные, плотные нитевидные волокна, изображенные на рис. 16.2. Основная масса газа в оболочке радиусом Развитие рентгеновской астрономии коренным образом изменило эту ситуацию. В 1970 г. был обнаружен источник мягкого рентгеновского излучения на месте системы волокнистых туманностей в созвездии Лебедя. Этот источник имеет угловые размеры, близкие к угловым размерам системы туманностей. Из вида рентгеновского спектра следует, что излучающий газ имеет температуру несколько миллионов кельвинов. Любопытно, что плазма с такой температурой и химическим составом, подобным химическому составу межзвездной среды, должна излучать интенсивные спектральные линии излучения, главным образом сильно ионизованных атомов кислорода, у которых осталось только 1—2 внутренних электрона. Эти линии находятся в мягкой рентгеновской области спектра и имеют длину около 20 Å. Они действительно обнаружены в рентгеновском спектре волокнистых туманностей в созвездии Лебедя (см. рис. 16.2). В близком будущем рентгеновская спектроскопия таких объектов позволит получить весьма ценную информацию о физических условиях в остатках вспышек сверхновых. Хотя разрешающая способность современных детекторов космического рентгеновского излучения еще низка (ем. введение), очень большие угловые размеры системы волокнистых туманностей в Лебеде позволяют получить хотя и грубое, но все же вполне реальное Это объясняется, как мы уже говорили выше, неоднородным распределением плотности в окружающей взорвавшуюся звезду межзвездной среде. Можно заметить также грубое соответствие между распределением рентгеновского и оптического излучений. Мы уже упоминали о рентгеновском телескопе, установленном на обсерватории «Эйнштейн». Этот прибор работал в мягком рентгеновском диапазоне, регистрируя кванты с энергией в интервале 0,1—4,5 кэВ. Он обладал неслыханной до этих пор чувствительностью — до 3 С помощью этого рентгеновского телескопа был выполнен ряд выдающихся по своему значению наблюдений. В частности, проводилось систематическое исследование остатков вспышек сверхновых. Всего было получено свыше 100 рентгеновских изображений таких объектов. Другими словами, были исследованы
До сих пор речь шла об оптическом и рентгеновском излучении туманностей, образовавшихся после вспышек сверхновых. Оба эти вида излучения являются простым следствием высокой температуры в плазме, образующейся за фронтом распространяющейся от очага взрыва ударной волны в межзвездной среде. Однако уже на заре радиоастрономии было обнаружено, что остатки вспышек сверхновых являются мощными источниками радиоизлучения совершенно особой природы. Обнаружение радиоизлучения от остатков вспышек сверхновых, бесспорно, является важнейшим этапом в истории изучения этих объектов. Как мы увидим дальше, исследование радиоизлучения является весьма эффективным методом анализа физических условий в расширяющихся оболочках — остатках взорвавшихся звезд. А это в свою очередь приближает нас к пониманию самого процесса взрыва звезд. Особый интерес представляет еще и то обстоятельство, что открывается возможность чисто радиоастрономическим методом определить расстояние до источников, что имеет, конечно, очень важное значение для понимания их природы. Перейдем теперь к изложению основных результатов наблюдений радиоизлучения остатков вспышек сверхновых. В 1948 г. английские радиоастрономы Райл и Смит обнаружили на северном небе в созвездии Кассиопеи необыкновенно яркий источник радиоизлучения, названный ими «Кассиопея А». В то время радиоастрономия переживала начальный, «героический» период своего развития. Выдающиеся открытия, совершаемые бывшими офицерами радиолокационной службы, следовали одно за другим. За два года до открытия Кассиопеи А другая группа английских радиоастрономов открыла первый «дискретный» источник радиоизлучения на небе — знаменитый «Лебедь А», который, как выяснилось через 5 лет, представляет собой удаленную галактику. Это была первая радиогалактика! На метровых волнах поток радиоизлучения от Кассиопеи А почти в два раза превышает поток от Лебедя А и довольно близок к потоку радиоизлучения от «спокойного» Солнца (т. е. в периоды, когда нет пятен, вспышек и других проявлений активности). Тот факт, что весьма удаленный от нас космический объект посылает поток почти такой же, как и «рядом» находящееся Солнце, сам по себе поразителен. Он говорит о необычности космических явлений в радиодиапазоне и о коренном отличии этих явлений от оптических. Сейчас, спустя 35 лет после открытия Кассиопеи А, радиоастрономия шагнула далеко вперед. На пределе своих возможностей она может зарегистрировать потоки радиоизлучения, в миллионы раз меньшие, чем от Кассиопеи А. Подавляющее большинство слабых источников представляют собой метагалактические объекты. Только малая часть сравнительно ярких известных источников отождествляется с остатками вспышек сверхновых. Вернемся, однако, к Кассиопее А. Сразу же после открытия этого ярчайшего радиоисточника невольно поразило то обстоятельство, что на его месте решительно ничего примечательного в оптических лучах не наблюдается. Создавалось впечатление, что мощнейший поток радиоизлучения приходит к нам, что называется, «из пустого места». Однако через три года, в 1951 г., Смит существенно уточнил координаты этого радиоисточника, что позволило американским астрономам Бааде и Минковскому обнаружить на этом месте очень слабую, совершенно необычную туманность, несомненно, связанную с источником радиоизлучения. Дальнейшие исследования показали, что этот источник имеет хотя и небольшие, но вполне определенные угловые размеры — около 5 минут дуги. Клочья и обрывки слабой оптической туманности как раз заполняют всю область, занимаемую источником радиоизлучения. Весьма характерен радиоспектр Кассиопеи А. Он хорошо представляется степенным законом (см. рис. 16.8 на стр. 459)
где После 1948 г. в нашей Галактике было открыто несколько источников радиоизлучения, связанных с остатками вспышек сверхновых. В следующем, 1949 г. австралийскими радиоастрономами было обнаружено радиоизлучение от Крабовидной туманности — остатка вспышки сверхновой 1054 г. Через 3 года было обнаружено радиоизлучение от остатков вспышек сверхновых 1572 г. (Тихо) и 1604 г. (Кеплер). После этого был обнаружен протяженный (угловые размеры Как правило, остатки вспышек сверхновых представляют собой в рентгеновских и радиолучах неправильные, часто «неполные» оболочки с заниженной интенсивностью в центральной части (см. рис. 16.5). Около 10 лет тому назад у остатков вспышек сверхновых был выделен новый класс объектов, получивших название «плерионы». Это такие остатки, у которых яркость концентрируется к центральной части. Классическим объектом этого типа является знаменитая Крабовидная туманность (см. рис. 17.2), которой будет посвящен следующий параграф. Всего в настоящее время в Галактике известно около десятка плерионов. Наряду с Крабовидной туманностью, большой интерес представляет объект 3C 58, отождествляемый со вспышкой сверхновой, наблюдавшейся в качестве «звезды-гостьи» в 1181 г. Недавно на обсерватории «Эйнштейн» в центре этого объекта как будто бы наблюдался точечный источник.
Встречаются также «гибридные» комбинации плерионов и оболочечных источников. Хорошим примером такой морфологии является объект Паруса X. Похоже на то, что у плерионов радиоспектр значительно более «плоский», чем у «оболочечных» источников. Значение плерионов для радиоастрономии определяется их несомненной связью с
Среди довольно протяженных, с низкой поверхностной яркостью радиоисточников,— остатков вспышек сверхновых — резко выделяется Кассиопея А. Этот компактный объект имеет огромную поверхностную яркость (в радиолучах, разумеется), а связанная с ним оптическая туманность резко отличается от тонковолокнистых туманностей, наблюдаемых в «старых» остатках сверхновых звезд. Эта туманность имеет настолько необычный вид, что первое время открывшие ее исследователи упорно не желали считать ее остатком вспышки сверхновой. Действительно, вид этой туманности и ее спектр совершенно не похожи ни на Крабовидную туманность и ее спектр, ни на изображенные на рис. 16.2 и 16.3 системы тонковолокнистых туманностей в Лебеде и Близнецах. На рис. 16.6 приведена фотография туманности Кассиопея А, полученная в красных лучах. Видно довольно вытянутое волокно (протяженность его около 3 Из наблюдаемой скорости расширения систем волокон Кассиопеи А можно получить возраст этого объекта. Оказывается, что взрыв звезды, явившийся причиной образования Кассиопеи А, произошел около 1667 г. (примерно между 1659 и 1675 г.). Представляется удивительным, почему европейские астрономы, которые так успешно наблюдали почти за столетие до этого Новые Тихо и Кеплера, решительно ничего не заметили в созвездии Кассиопеи. Почему же это так получилось? Почему «прозевали» вспышку этой сверхновой в эпоху, когда в Европе уже были обсерватории? Конечно, видимая яркость звезды зависит не только от мощности ее излучения, но и от расстояния до нее. Каково же расстояние до Кассиопеи А? Первая надежная оценка расстояния до этого источника была получена радиоастрономическим методом. Метод основывается на изучении линии поглощения в радиоспектре источника на волне 21 см. Эта линия образуется в результате поглощения радиоизлучения межзвездными атомами водорода. Так как последние концентрируются преимущественно в спиральных рукавах Галактики, которые имеют друг относительно друга разные скорости, то это отразится на «профиле» линии, которая разобьется на несколько компонент, соответствующих водородному поглощению в различных рукавах. Так как в направлении на Кассиопею А существуют
Итак, расстояние до Кассиопеи А около 3000 пс. Если бы не было межзвездного поглощения света, видимая величина вспыхнувшей сверхновой (абсолютная величина которой, как можно полагать, была около -20 Выше уже упоминалось, что, кроме быстро движущихся волокон, в Кассиопее А наблюдаются почти стационарные конденсации. Скорее всего, эти конденсации представляют собой сжатый ударной волной межзвездный газ. Похоже, однако, на то, что химический состав этих конденсаций не совсем обычен: азот там аномально обилен по отношению к кислороду. Если это так, то остается только считать, что ударная волна от взрыва распространялась уже не по межзвездной среде, а по оболочке, «вытекшей» из звезды, которая взорвалась как сверхновая. Таким образом, все особенности весьма своеобразного остатка сверхновой Кассиопеи А объясняются молодостью этого объекта. В 1966 г. было обнаружено рентгеновское излучение от Кассиопеи А. В отличие от рентгеновского излучения от других, гораздо более «старых» остатков сверхновых, рентгеновское излучение от Кассиопеи А значительно жестче. Как мощность, так и спектр рентгеновского излучения Кассиопеи А естественно объясняется теорией, развитой выше. Заметим в этой связи, что в окрестностях Кассиопеи А плотность межзвездного газа повышена ( Перейдём теперь к основному вопросу о природе радиоизлучения от остатков вспышек сверхновых. В настоящее время обнаружено радиоизлучение практически от всех ионизованных газовых туманностей, как «диффузных», так и планетарных. Однако это излучение, если можно так выразиться, носит тривиальный характер. Оно является чисто тепловым, и его интенсивность и спектр определяются известным законом Кирхгофа:
где
т. е. вне зависимости от физических свойств источника она будет иметь некоторое совершенно определенное значение, зависящее только от частоты и температуры излучающего ионизованного газа. Если
так как Уже один взгляд на спектр туманностей — остатков вспышек сверхновых, например, Кассиопеи А, говорит о том, что их излучение ничего общего с тепловым не имеет. Последнее на ограниченном интервале изменения
Правильная идея, объясняющая радиоизлучение остатков сверхновых (так же как и большинства других источников космического радиоизлучения), была предложена в 1950 г. шведскими физиками Альвеном и Херлофсоном и, независимо, немецким астрофизиком Кипенхойером. В последующие годы эта идея во всех деталях была разработана главным образом в СССР и доведена до уровня весьма совершенной теории. Ее применение к конкретным астрономическим объектам, в частности, к остаткам сверхновых, оказалось очень плодотворным. На основе новой теории удалось объяснить большое количество астрономических наблюдаемых фактов и предсказать ряд новых, которые полностью подтверждались специально поставленными наблюдениями. Что же это за теория? Из физики уже давно известно, что если электрон движется во внешнем магнитном поле
Со стороны низких частот, т. е. для Для того чтобы «почувствовать» порядок входящих в формулы синхротронного излучения величин, напомним, что энергия покоя электрона Мы рассматривали синхротронное излучение только
где
где
Формула (16.11), впервые полученная советским радиоастрономом А. А. Корчаком, связывает показатель степенного энергетического спектра релятивистских электронов со спектральным индексом их синхротронного излучения. Так, например, в случае Кассиопеи А Таким образом, мы подошли к важнейшему выводу: в расширяющихся туманностях — остатках вспышек сверхновых звезд — содержится огромное количество релятивистских частиц, т. е., другими словами, космических лучей! Впервые открылась возможность наблюдать первичные космические лучи (точнее, их электронную компоненту) не у поверхности Земли, а в глубинах Галактики и даже Вселенной, ибо радиоизлучение галактик и открытых в 1963 г. квазаров имеет синхротронную природу. Установление этой возможности, открывшей новую эру в изучении космических лучей, пожалуй является одним из важнейших достижений радиоастрономии. Применяя теорию синхротронного излучения к реальным источникам (например, остаткам вспышек сверхновых), можно найти полное количество находящихся там релятивистских электронов и их энергию, а также напряженность магнитного поля. При этом поступают следующим образом. Прежде всего надо иметь в виду, что в источниках радиоизлучения наряду с электронами должны быть и другие релятивистские частицы, главным образом протоны[ 36 ]. Тяжелые релятивистские частицы, однако, практически не излучают, так как их масса слишком велика. Поэтому в радиоисточниках создалась своеобразная ситуация: из всех имеющихся там релятивистских частиц благодаря их синхротронному излучению можно было наблюдать только электроны. Однако в последние годы, благодаря успехам внеатмосферной гамма-астрономии, выявилась возможность наблюдать и протонную компоненту космических лучей. Прогресс в этой важной области связан с успешной работой специализированных спутников «SAS-2» и «Cos-B», на которых детально исследовалось обнаруженное незадолго до этого на ракетах жесткое космическое гамма-излучение с энергией квантов Анализ распределения интенсивности космического гамма-излучения по небу позволяет сделать вывод, что первичные космические лучи концентрируются к рукавам спиральной структуры Галактики, где их плотность почти в три раза больше, чем в окрестностях Солнца (расположенного, как известно, между рукавами). Интересно, что на гамма-спутниках было обнаружено значительное повышение интенсивности космического гамма-излучения в области галактических долгот 260°—270°. Важно отметить, что в этой области неба находится один из ближайших к нам ( Обозначим энергию всех релятивистских частиц, содержащихся в единице объема (т. е. плотность энергии этих частиц) через
Существенным является то обстоятельство, что плотность энергии релятивистских частиц
Можно показать, что если
Распределение интенсивности у протяженных радиоисточников — остатков вспышек сверхновых, довольно сложно. На рис. 16.9 приведено «радиоизображение» туманности Кассиопея А, полученное с помощью радиоинтерферометра с хорошей разрешающей способностью. Хотя структура радиоизображения, приведенная на рис. 16.9, довольно сложна и изобилует большим количеством деталей (там видно по крайней мере 10 маленьких конденсаций), в целом она имеет явно выраженный «оболочечный» характер. Радиоизлучение сосредоточено на периферии некоторого сфероидального объема, причем толщина радиоизлучающего слоя составляет несколько десятых его радиуса. Последний легко оценить из измеренного углового радиуса (около 2 Теперь в нашем распоряжении имеются все необходимые данные, чтобы определить энергию релятивистских частиц в остатках вспышек сверхновых и величину имеющегося там магнитного поля. Необходимая для расчетов интенсивность радиоизлучения может быть получена из измеренного значения потока и угловых размеров. Если в пределах данных угловых размеров интенсивность (т. е. яркость) остается постоянной, то приближенно будем иметь
где В случае Кассиопеи А при Аналогичные вычисления, выполненные для других, более «старых» остатков вспышек сверхновых, дают сходные значения Мы видим, что физические условия в оболочках — остатках вспышек сверхновых определяются сложным переплетением взаимодействий космических лучей, магнитных полей, очень горячей плазмы, образующейся за фронтом ударной волны, и погруженных в эту плазму плотных, сравнительно холодных газовых волокон. Таким образом, синхротронная теория полностью объяснила все особенности радиоизлучения остатков сверхновых. В частности, стала понятной наблюдаемая Однако любая теория только тогда может быть признана правильной, когда исходя из нее можно предсказать совершенно новое явление, которое после этого наблюдается. В истории астрофизики и радиоастрономии большую роль сыграло предсказание поляризации оптического излучения Крабовидной туманности, которое блестяще подтвердилось наблюдениями. Это предсказание было сделано на основе истолкования давно известного Остатки вспышек сверхновых представляют собой неограниченно расширяющиеся объекты, в конце концов рассеивающиеся в межзвездной среде. Туманность Кассиопея А, которая достаточно подробно описывалась выше, является молодым объектом. Облака газа, выброшенные при вспышке сверхновой, только едва начинают тормозиться межзвездной средой. Они почти полностью сохранили свою первоначальную скорость, приобретенную, во время взрыва. Наоборот, такие объекты, как волокнистые туманности в созвездии Лебедя, IС 443 и аналогичные им, представляют собой достаточно старые остатки вспышек сверхновых. Их линейные размеры в 5—10 раз превышают линейные размеры Кассиопеи А. Скорость их расширения сильно упала. Наконец, и это, пожалуй, самое интересное — мощность их радиоизлучения значительно меньше, чем мощность радиоизлучения Кассиопеи А. Мощность источника пропорциональна произведению квадрата расстояния до него на величину потока. Так как расстояние до волокнистых туманностей в Лебеде почти в четыре раза меньше, чем до Кассиопеи А, а поток радиоизлучения почти в сто раз меньше, то мощность радиоизлучения Кассиопеи А оказывается в полторы тысячи раз больше, чем у такого «старого» объекта, как волокнистые туманности в Лебеде! Таким образом, мы приходим к чисто эмпирическому выводу, что по мере расширения остатка вспышки сверхновой мощность его радиоизлучения сильно уменьшается. Еще в большей степени уменьшается поверхностная яркость «старых» остатков. Например, поверхностная яркость радиоисточника, связанного с волокнистыми туманностями, в сотню тысяч раз меньше, чем Кассиопеи А. Между тем количество релятивистских электронов, ответственных за синхротронное излучение этих объектов, практически не уменьшается в течение их эволюции. Ведь релятивистские частицы как бы «заперты» в сдерживающем их запутанном магнитном поле, накрепко привязанном к расширяющимся газовым волокнам. По какой же причине происходит столь разительное уменьшение мощности и интенсивности радиоизлучения остатков вспышек сверхновых по мере их эволюции? Этот вопрос исследовался автором настоящей книги в 1960 г. Оказывается, что по мере расширения радиотуманности должна уменьшаться напряженность магнитного поля. Можно ожидать, что в процессе расширения сохраняется значение магнитного потока, т. е. произведение квадрата радиуса радиотуманности на среднюю величину магнитного поля. Если это так, то магнитное поле такого объекта по мере его расширения должно меняться в первом приближении как Таким образом, есть несколько достаточно серьезных причин для непрерывного уменьшения мощности синхротронного излучения радиотуманностей по мере их расширения. Учет всех этих причин позволяет получить следующую простую формулу для зависимости мощности эволюционирующего источника синхротронного излучения от радиуса радиотуманности на адиабатической фазе расширения последней:
где, как и раньше,
Эта формула в первом приближении вполне удовлетворительно описывает уменьшение потока и яркости радиоизлучения от расширяющихся остатков вспышек сверхновых. Из нее, например, следует, что когда в процессе расширения линейные размеры Кассиопеи А станут равны современным размерам системы волокнистых туманностей в Лебеде, мощность ее синхротронного излучения упадет во много тысяч раз. Наоборот, когда остатки сверхновой, связанные с тонковолокнистыми туманностями в Лебеде, имели размеры современной Кассиопеи А, то принимая во внимание, что для этого источника Таким образом, теория предсказывает, что потоки радиоизлучения от остатков вспышек сверхновых должны непрерывно убывать. Допустим теперь, что расширение источника происходит с постоянной скоростью, что справедливо для молодых, еще не затормозившихся источников, к числу которых принадлежит Кассиопея А. В таком случае радиус источника пропорционален его возрасту и мы можем переписать формулу (16.14) в виде
так как поток Обозначим годичное уменьшение потока от такого источника через
где Обнаружение предсказанного теорией быстрого уменьшения потока радиоизлучения от Кассиопеи А есть прямое доказательство правильности синхротронной теории и всех ее выводов. У других, более «старых» радиоисточников — остатков вспышек сверхновых — вековое уменьшение потока обнаружить пока нельзя: слишком медленно меняется их радиус.
Несколько лет назад американские радиоастрономы подтвердили наблюдения горьковских радиоастрономов Станкевича и Цейтлина, установивших, что по мере расширения Кассиопеи А меняется не только ее поток, но и
Нас не должно смущать, что эмпирический закон убывания радиосветимости по мере роста радиуса более пологий, чем теоретический, описываемый формулой (16.15). Во-первых, не все туманности находятся на адиабатической стадии расширения, во-вторых, спектральные индексы большинства туманностей сравнительно невелики. Полученной эмпирической зависимостью (16.18) мы воспользуемся для того, чтобы развить новый метод определения расстояний до остатков вспышек сверхновых, которые другими методами определить либо невозможно, либо весьма затруднительно. Этот метод носит статистический характер и по идее вполне аналогичен нашему методу определения расстояний до планетарных туманностей, который был предложен в 1956 г. и вскоре стал общепризнанным. В обоих случаях светимость объектов довольно быстро уменьшается с ростом их линейных размеров по мере расширения[ 38 ]. Поэтому разница в размерах разных объектов относительно невелика и в первом приближении расстояние будет обратно пропорционально
где показатель Зная расстояния до остатков сверхновых, можно оценить полное количество таких объектов в Галактике. Это количество оказывается порядка 500, причем свыше 100 непосредственно наблюдаются и занесены в каталоги. Так как средний возраст таких остатков близок к 20 000 годам (см. начало этого параграфа), то отсюда можно оценить среднюю частоту вспышек сверхновых в Галактике: примерно одна вспышка за сорок лет. Из всех остатков сверхновых выделяется один замечательный объект, природа которого, правда, еще окончательно не установлена. Речь идет о знаменитом галактическом «шпуре». Это смешной «перевод» на русский язык английского слова «spur», что попросту означает ... «шпора». Уже первые радионаблюдения Галактики, выполненные на заре радиоастрономии, выявили в распределении радиояркости по небу одну очень крупную деталь. Известно, что интенсивность космического радиоизлучения имеет значительную концентрацию к галактическому экватору и центру. Однако в 30° от центра из области галактического экватора почти перпендикулярно к нему отходит довольно яркая, сравнительно узкая полоса радиоизлучения, которая тянется на огромное расстояние почти до северного галактического полюса и, описав гигантскую петлю, возвращается обратно к галактическому экватору. В целом «шпур» представляет собой на небесной сфере малый круг диаметром около 110°. Спектр «шпура» указывает на то, что его излучение имеет синхротронную природу. Никаких протяженных, даже очень слабых оптических объектов в области «шпура» не обнаружено. В разное время предлагалось несколько гипотез, в которых содержались попытки объяснения природы этой весьма значительной детали радиоизлучения Галактики. Наиболее интригующей является гипотеза, согласно которой «шпур» — это не что иное, как остаток вспышки сверхновой, имевшей место несколько десятков тысяч лет назад. Так как поверхностная яркость радиоизлучения «шпура» примерно такая же, как .у радиотуманности, связанной с волокнистыми туманностями в Лебеде, линейный диаметр «шпура» при такой интерпретации должен быть около 35—40 пс. Следовательно, вспышка сверхновой произошла очень близко от Солнца — всего лишь на расстоянии около 25 пс. Это могло случиться примерно 20 000 лет назад — на памяти кроманьонского человека... Серьезным доводом в пользу гипотезы о «сверхновой» природе «шпура» явилось уверенно обнаруженное мягкое рентгеновское излучение во всей его полосе. Мы уже знаем, что такое рентгеновское излучение является важнейшим атрибутом старых остатков вспышки сверхновых. Отсутствие оптических тонковолокнистых туманностей в области «шпура» не должно рассматриваться как серьезный аргумент против обсуждаемого объяснения его природы. Оптические остатки сверхновых отличаются большим разнообразием. В сущности, мы пока еще плохо представляем, как образуются удивительно тонкие газовые волокна в ударной волне, распространяющейся в межзвездной среде после вспышки сверхновой. Имеется, однако, один важный аргумент против такой интерпретации: никакого повышения интенсивности жесткого гамма-излучения в области «шпура» не обнаружено. Это означает, что релятивистских протонов там мало. И все же представляется весьма вероятным, что около 20 000 лет назад в окрестностях Солнца произошла вспышка сверхновой. Это очень маловероятное событие, так как Важнейшим эффектом от близкой к Солнцу вспышки сверхновой является увеличение уровня первичных космических лучей. Это произойдет тогда, когда расширяющаяся радиотуманность дойдет до Солнечной системы, которая тем самым окажется внутри нее. Из геометрии «шпура» следует, что пока это еще не случилось. Расстояние от Солнечной системы до ближайшей точки радиотуманности должно быть всего 5—10 пс, т. е. весьма незначительно. Потребуется еще несколько десятков тысяч лет, чтобы мы оказались внутри радиотуманности. Что же при этом произойдет? Ничего особенного: интенсивность мягкой компоненты первичных космических лучей увеличится в несколько раз — и только. Значительно более серьезные последствия для Земли имели бы место, если бы вспышка сверхновой произошла ближе, чем в 10 пс от нас. В этом случае плотность космических лучей может возрасти в десятки раз. Заметим, что такие события в истории нашего Солнца случались очень редко: примерно один раз в сотню миллионов лет. Увеличение плотности космических лучей в окрестностях Солнца будет длиться пару десятков тысяч лет, после чего оболочка радиотуманности удалится и через сотню тысяч лет «космический фон» вернется к своему первоначальному «невозмущенному» значению. Какие же последствия может иметь столь значительное увеличение плотности первичных космических лучей в окрестностях Солнца? Прежде всего это может (могло бы!) иметь довольно серьезные биологические (точнее, генетические), последствия для многих видов животных и растений, населяющих (или населявших) нашу планету. Известно, что эволюция видов регулируется естественным отбором, являющимся ее движущей силой. Вместе с тем, естественный отбор определяется условиями внешней среды. Неизбежно происходящие мутации сохраняются в потомстве, если они благоприятны для выживания вида. Наличие повышенной радиоактивности в приземном слое воздуха является одной из причин «спонтанных» или самопроизвольных мутаций. Значительное увеличение частоты мутаций по причине повышенной радиоактивности воздуха может повлечь за собой самые серьезные последствия для многих видов. Однако различные виды по-разному реагируют на жесткое облучение. Для видов с коротким циклом размножения для увеличения частоты мутации в два раза требуется увеличение дозы облучения в тысячу раз, в то время как для долгоживущих форм достаточно для этого увеличить дозу в 3—10 раз. Нами совместно с В. И. Красовским довольно давно была высказана гипотеза, объясняющая известное вымирание рептилий в конце мелового периода вспышкой вблизи Солнца сверхновой звезды. В настоящее время, однако, существующих палеонтологических данных недостаточно, чтобы подтвердить (или опровергнуть) эту гипотезу. Следует еще заметить, что для отдельных видов животных и растений увеличение уровня жесткой радиации могло быть фактором, благоприятствующим их эволюции. Не этим ли объясняется пышный расцвет растительности в каменноугольный период? Наконец, само возникновение жизни на первобытной Земле могло стимулироваться высоким уровнем радиации. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|