"Звезды: их рождение, жизнь и смерть" - читать интересную книгу автора (Шкловский Иосиф Самуилович)Глава 14 Эволюция звезд в тесных двойных системахВ предыдущем параграфе довольно подробно рассматривалась эволюция звезд. Необходимо, однако, сделать важную оговорку: речь шла об эволюции одиночных, изолированных звезд. Как же будет протекать эволюция звезд, образующих двойную (или вообще кратную) систему? Не будет ли при этом одна звезда «мешать» нормальной эволюции своей соседки? Вопрос этот имеет принципиально важное значение прежде всего потому, что кратность — чрезвычайно распространенное явление в звездном мире. Приблизительно половина всех звезд главной последовательности входит в состав кратных систем. Для верхней части этой последовательности, содержащей массивные, горячие звезды спектральных классов О и В, доля звезд, входящих в кратные системы, составляет по крайней мере 70%. Заметим, что у звезд II типа населения (см. § 1) кратность — явление довольно редкое. Интерес исследователей к эволюции звезд в двойных системах, особенно тесных, стимулируется еще и тем обстоятельством, что некоторые в высшей степени любопытные звезды наблюдаются только в двойных системах. Прежде всего — это новые звезды, вспышки которых уже давно привлекают к себе самое пристальное внимание астрономов. Особый интерес представляют сейчас Основной характеристикой звезды, определяющей весь ее эволюционный путь, является масса. Чем больше В 1955 г. было дано вполне разумное объяснение указанному парадоксу. Звезда высокой светимости в паре обладала большей массой Как же происходит процесс обмена материей между компонентами двойной системы? Рассмотрим двойную систему, массы компонент которой
Поверхность Роша состоит из двух замкнутых полостей, окружающих обе звезды и имеющих общую точку
Формула (14.1) дает вполне удовлетворительную точность для 0 Рассмотрим теперь следующую модель эволюции звезд в тесной двойной системе. Пока обе компоненты двойной системы пребывали на главной последовательности, их радиусы были меньше радиусов соответствующих полостей Роша, определяемых формулой (14.1). Когда исчерпается значительная часть водородного горючего в центральной части быстрее эволюционирующей более массивной звезды, радиус последней станет Скорость потери массы эволюционирующей звездой очень быстро растет по мере роста радиуса этой звезды после достижения им величины радиуса полости Роша. Расчеты показывают, что убыль массы за единицу времени
где величина В первом приближении можно принять, что в процессе эволюции газ, выброшенный эволюционирующей звездой, не покинет пределы двойной системы, т. е. ее полная масса
Можно убедиться, что минимальное расстояние между компонентами двойной системы будет тогда, когда в процессе «перекачки» массы от эволюционирующей компоненты к неэволюционирующей массы обеих звезд сравняются.
Как же будет происходить эволюция в такой системе? Для конкретности рассмотрим, например, случай, когда масса эволюционирующей компоненты равна пяти солнечным массам, а отношение масс компонент равно 2. Теоретическая зависимость радиуса такой звезды (если бы она была одиночной) от времени приведена на рис. 14.2. Можно видеть, что «разбухание» звезды в процессе эволюции проходит три стадии: A) Первая стадия, связанная с выгоранием водорода в центре звезды и медленным увеличением ее радиуса после того как звезда стала уходить с главной последовательности (см. рис. 12.2). B) Быстрое расширение оболочки звезды, связанное со сжатием ее ядра после того, как там выгорел водород. Эта стадия продолжается до тех пор, пока вследствие повышения температуры сжимающегося ядра включится тройная гелиевая реакция, о которой речь шла в § 8. C) Эта стадия наступает после выгорания гелия, когда ядро начнет опять сжиматься и нагреваться, пока не начнутся ядерные реакции на углероде. Описанная эволюция одиночной звезды будет нарушена тем раньше, чем ближе расположены компоненты друг к другу. Например, если в нашем случае период двойной системы около одного дня, то уже на стадии A звезда заполнит свою полость Роша и начнется обмен массой со второй компонентой. Если период порядка нескольких десятков дней, то это произойдет на стадии B. И, наконец, если период больше трех месяцев — на стадии C. Впрочем, следует заметить, что фаза C, которую достигают в одиночном состоянии далеко не все звезды, исследована очень плохо, и мы здесь этой стадией заниматься не будем. В последние годы было выполнено довольно много численных расчетов эволюции с обменом масс в двойных системах. Эти расчеты показывают, что следует различать два этапа в таком обмене масс. Вначале скорость перетекания массы от эволюционирующей компоненты ко второй очень велика; существенная часть массы теряется эволюционирующей компонентой за время, близкое к «шкале Кельвина — Гельмгольца» (см. § 3):
где величины со звездочками выражаются в солнечных единицах. Это дает для средней скорости обмена масс значение
По-видимому, в такой стадии «быстрого обмена массами» находятся двойные системы типа знаменитой системы В дальнейшем эволюция в такой системе пойдет значительно медленнее и скорость перетекания массы сильно уменьшится. Вместе с тем светимость уже ставшей менее массивной, эволюционирующей компоненты изменится мало. Длительность этой фазы эволюции образовавшегося таким образом «субгиганта» примерно такая же, как и длительность эволюции первоначально более массивной звезды, когда она «спокойно» сидела на главной последовательности. Однако по сравнению со звездой той же массы, принадлежащей к главной последовательности, которая получилась после «обмена», субгигант имеет раз в 10 большую светимость. Мы сейчас описали эволюцию двойной системы на стадии A. Стадия B протекает по-разному у более массивных и у менее массивных звезд. Разница объясняется тем, что, как мы видели в § 12, в процессе эволюции у менее массивных звезд образуется сверхплотное вырожденное ядро. Фаза быстрого обмена массой будет общей для всех звезд, если обмен начинается на стадии B. Затем, однако, наступают различия. У более массивных звезд темп дальнейшей эволюции протекает значительно быстрее. Если первоначальная масса эволюционирующей компоненты превышает три солнечные массы, то после включения в ядре тройной гелиевой реакции расширение звезды останавливается и скорость вытекания массы с ее поверхности резко замедляется и даже прекращается совсем. Такая звезда, как полагает польский астроном Б. Пачинский, много работавший в этой области, будет похожа на так называемую звезду типа Вольфа — Райе — весьма горячий объект, в спектре которого наблюдаются широкие полосы излучения. Если же масса первичной звезды сравнительно невелика, быстрое расширение ее оболочки на стадии красного гиганта останавливается по другой причине: наступает вырождение в области ядра звезды. И в этом случае скорость вытекания массы резко замедлится. Звезда будет излучать за счет водородных реакций в тонкой оболочке, окружающей ядро (см. § 12). Светимость эволюционирующей звезды будет достаточно велика: раз в 100 больше, чем светимость звезды такой же массы, находящейся на главной последовательности. Интересно отметить, что к концу этой фазы масса проэволюционировавшей компоненты сильно уменьшается: она может быть в пять и даже в 10 раз меньше массы вторичной компоненты, «вобравшей» в себя существенную часть первоначальной массы своей «соседки». «Наглотавшаяся» соседским веществом вторичная компонента все еще будет оставаться на главной последовательности, причем из-за существенно увеличившейся массы ее светимость может даже превосходить светимость проэволюционировавшей компоненты. Именно такая ситуация наблюдается в тесных двойных системах типа Алголя. На заключительном этапе, когда в эволюционирующей звезде останется совсем мало массы, ее радиус начнет уменьшаться и она, по-видимому, превращается в белый карлик. Набросанная выше картина эволюции двойных систем на стадиях A и B подтверждается огромным количеством наблюдений. В частности, эта картина непринужденно объясняет давно известный эмпирический факт, что избыточная светимость эволюционирующей компоненты тем больше, чем меньше отношение масс
Выше были обрисованы основные тенденции эволюции звезд в тесных двойных системах. Впрочем, следует оговориться, что понятие «тесный» вовсе не означает «геометрическую» близость компонент. «Тесной» мы называем такую систему, у которой эволюционирующая компонента на какой-нибудь фазе заполнит свою полость Роша. Но мы уже видели, что на стадии C (см. рис. 14.1) это может произойти, когда расстояния между компонентами порядка астрономической единицы, а периоды обращения по орбитам исчисляются годами. Поэтому, с точки зрения звездной эволюции, большинство двойных систем являются «тесными». Существенно подчеркнуть, что рассматривавшаяся выше эволюция таких систем носит медленный, спокойный, отнюдь не катастрофический характер. Между тем астрономам уже давно известны классы резко нестационарных звезд, которые Отличительным свойством вспышек новых и новоподобных звезд является их повторяемость («рекуррентность»). Интервалы между вспышками у новоподобных звезд около 100 лет. Можно полагать, что у более интенсивно вспыхивавших новых эти интервалы исчисляются сроками порядка нескольких тысяч лет. Повторяемость вспышек новых следует хотя бы из того простого факта, что ежегодное их количество в Галактике порядка нескольких десятков. Следовательно, если бы не было повторяемости, за пару миллиардов лет в Галактике вспыхнули бы как новые все звезды — вывод явно абсурдный. Значит, существует некоторый класс звезд, которые многократно вспыхивают. Вряд ли следует сомневаться в том, что проэволюционировавшая, горячая компактная звезда представляет собой объект, сходный с белым карликом и весьма бедный водородом (см. § 12). Между тем от заполняющей свою полость Роша красной компоненты на проэволюционировавшую звезду все время падает богатый водородом газ[ 34 ]. Газ этот, после того как он накопится в поверхностном слое горячей звезды в течение сотен и тысяч лет, может стать причиной теплового взрыва, носящего как бы «локальный» характер, т. е. не охватывающего всю структуру звезды как целого. При таком взрыве выбрасывается довольно значительное количество массы, порядка 10-4—10-5 массы Солнца, как это следует из спектральных наблюдений новых звезд. Заметим, что примерно такая же масса «перетечет» на горячую компактную звезду от соседней компоненты за время между двумя вспышками. В этой чисто качественной картине вспышек новых звезд еще многое не ясно. Прежде всего — что это за ядерные реакции, «питаемые» накапливающимся в поверхностных слоях проэволюционировавшей звезды водородом? На сколько вспышек хватит «ресурсов» двойной системы? На что будет похожа такая система, когда фаза вспышки окончится? Все эти интересные вопросы пока еще только ждут ответа. Звезды типа U Близнецов характеризуются значительно большей частотой повторяемости вспышек и их меньшей амплитудой (рис. 14.4). Так же как и новые звезды в периодах между вспышками, звезды этого типа — очень компактные горячие объекты низкой светимости. Примечательно, однако, что при вспышках звезд типа U Близнецов не наблюдается никаких следов выброшенного газа. С другой стороны, в спектрах этих звезд, полученных в «спокойное» время между вспышками, так же как и у новых, наблюдаются линии излучения, указывающие на существование газового диска. Похоже, что механизм быстро чередующихся взрывов у звезд типа U Близнецов совсем не такой, как у новых. Эти звезды еще ждут своих исследователей — наблюдателей и теоретиков.
Таким образом, эволюция в тесных двойных системах может привести к рождению «сиамских близнецов», неких патологических «уродов», которые мы наблюдаем как новые звезды, звезды типа U Близнецов (сиамских?) и пр. В четвертой части этой книги будут обсуждаться еще более удивительные двойные системы. Сказанного достаточно, чтобы заключить, что двойственность звезды есть решающий фактор, определяющий ее эволюцию. Вопрос о происхождении тесных двойных систем уже давно, еще в конце прошлого века, был предметом многочисленных дискуссий. Конкурировали две гипотезы: а) совместное образование обеих компонент системы из первичного газово-пылевого облака; б) деление одной, первоначально очень быстро вращающейся звезды на две части. Вторая теория, которой некогда придерживались многие выдающиеся математики и механики (например, Пуанкаре), носила довольно формальный характер и сталкивалась со значительными теоретическими трудностями. Поэтому в последние десятилетия практически все астрономы придерживались, казалось бы, вполне естественной гипотезы об одновременном образовании обеих компонент системы. Правда, при этом возникала классическая трудность — как избавиться от слишком быстрого осевого вращения образующихся из диффузной среды звезд? Ведь звезды с массой, меньшей чем у Солнца, согласно наблюдениям, вращаются очень медленно. Предлагалось несколько довольно остроумных гипотез объясняющих это обстоятельство, но ощущение некоторой неопределенности оставалось. Однако в самое последнее время, точнее, осенью 1982 г. на этом, казалось бы, совершенно «спокойном участке фронта» произошли бурные события. Группа голландских астрономов с помощью скромного телескопа с диаметром зеркала 0,9 м на Европейской обсерватории в Чили провела тщательное фотометрическое исследование звезд, входящих в состав известного скопления Плеяд. Из нескольких сотен звезд, находящихся в этом скоплении, изучались сравнительно яркие объекты поздних спектральных классов G и ранних К. Массы таких звезд лишь немного меньше солнечной (1—0,8 Что же является причиной такого неравномерного распределения яркости по дискам звезд? Первое, что приходит в голову,— искать причину в больших пятнах (вроде солнечных, но побольше), покрывающих поверхности звезд. Однако, как это видно на примере Солнца, пятна возникают более или менее случайно, поэтому строго периодической картины вариаций блеска звезд они не дадут. Между тем кривые блеска звезд в Плеядах остаются неизменными за 1500 звездных оборотов! Кроме того, амплитуда вариаций блеска не связана с величиной звездного магнитного поля, что можно было ожидать, если бы причиной наблюдаемой переменности были бы солнечные пятна. И наконец, было обнаружено, что температура поверхности звезды меняется примерно на 100 К за цикл, между тем как наличие темных пятен привело бы только к эффективному уменьшению излучающей поверхности без изменения ее температуры. Эти звезды вращаются приблизительно в 100 раз быстрее «нормальных» звезд того же самого спектрального класса. Всего удивительнее, что в тех же Плеядах слегка более массивные звезды вращаются «нормально», т. е. значительно более медленно. Создается впечатление, что звезды рождаются и первое время живут в состоянии очень быстрого вращения, а затем на каком-то этапе эволюции быстро теряют свой вращательный момент, который переходит в орбитальный. Из-за быстрого вращения эти звезды имеют форму сильно сплюснутых трехосных эллипсоидов, и даже, возможно, грушевидных фигур равновесия, привлекавших внимание некоторых теоретиков много десятилетий тому назад. Эти исследования находятся, конечно, в самой ранней стадии. Очень важно провести аналогичные наблюдения для других скоплений и ассоциаций, в частности, для ассоциации в Орионе. Возраст этой ассоциации примерно в 10 раз меньше, чем Плеяд. Поэтому можно ожидать, что в стадии деления там будут звезды несколько более массивные (и, следовательно, более ранних спектральных классов), чем в Плеядах. И, конечно, возникает интригующая возможность по-новому подойти к проблеме образования Солнечной системы. |
||||||||||||||||||||||||
|