"Фармакология и физиология силы" - читать интересную книгу автора (Кулиненков О. С.)Кулиненков О.С |
АДФ + Фосфат + свободная энергия lt;=gt; АТФ
Фосфокреатин + АДФ lt;=gt; креатин + АТФ
2 АДФ lt;=gt; АМФ + АТФ
Гликоген (глюкоза) + Фосфат + АДФ lt;=gt; лактат + АТФ
Гликоген (глюкоза), жирные кислоты + Фосфат +О2С02 + Н2 0 + АТФ
Источники энергии — это фосфагены, глюкоза, гликоген, свободные жирные кислоты, кислород.
Введение АТФ извне в достаточных дозах невозможно (обратное является широко распространенным заблуждением), следовательно, необходимо создать условия для образования повышенного количества эндогенного АТФ. На это направлена тренировка — сдвиг метаболических процессов в сторону образования АТФ, а также обеспечение ингредиентами.
Скорость накопления и расхода энергии значительно различаются в зависимости от функционального состояния спортсмена и вида спорта. Определенный вклад в процесс энергообеспечения, его коррекцию, возможен со стороны фармакологии.
В начале 70-х годов было доказано, что сокращение ишемизированного миокарда прекращается при исчерпании клеточных запасов фосфокреатина (ФК), несмотря на то, что в клетках остается неизрасходованным около 90 % АТФ. Эти данные говорят о том, что АТФ неравномерно распределена внутри клетки. Доступным является не весь АТФ, содержащийся в мышечной клетке, а лишь его небольшая часть, локализованная в миофибриллах. Результаты исследований, выполненных в последующие годы, показали, что связь между внутриклеточными пулами АТФ осуществляют ФК и изоферменты креатинкиназы. В нормальных условиях молекула АТФ, выведенная из митохондрии, передает свою энергию креатину, который под воздействием митохондриального изофермента креатинкиназы трансформируется в ФК. Последний мигрирует к местам локальных креатинки-назных реакций (сарколемма, миофибриллы, саркоплазматический ретикулум), где другие изоферменты креатинкиназы обеспечивают ресинтез АТФ из ФК и АДФ.
Освобождающийся при этом креатин возвращается в митохондрию, а энергия АТФ используется по назначению, в том числе и для мышечного сокращения (см. схему). Скорость транспорта энергии внутри клетки по фосфокреатиновому пути значительно превосходит скорость диффузии АТФ в цитоплазме. Именно поэтому снижение содержания ФК в клетке и приводит к депрессии сократимости даже при сохранении значительного внутриклеточного запаса основного энергетического субстрата — АТФ.
По современным представлениям, физиологическая роль ФК состоит в эффективном обеспечении внутриклеточного транспорта энергии от мест ее производства к местам использования.
В аэробных условиях основными субстратами для синтеза АТФ являются свободные жирные кислоты, глюкоза и лактат, метаболизм которых в норме обеспечивает продукцию около 90 % общего количества АТФ. В результате ряда последовательных каталитических реакций из субстратов образуется ацетил-коэнзим А. Внутри митохондрий в ходе цикла трикарбоновых кислот (цикла Кребса) происходит расщепление ацетил-коэнзима А до углекислоты и атомов водорода. Последние переносятся на цепь транспорта электронов (дыхательную цепь) и используются для восстановления молекулярного кислорода до воды. Энергия, образующаяся при переносе электронов по дыхательной цепи, в результате окислительного фосфорилирования трансформируется в энергию АТФ.
Уменьшение доставки кислорода к мышцам влечет за собой быстрый распад АТФ до АДФ и АМФ, затем распад АМФ до аденозина, ксантина и гипоксантина. Нуклеотиды через саркоплазматическую мембрану выходят в межклеточное пространство, что делает невозможным ресинтез АТФ.
В условиях гипоксии интенсифицируется анаэробный процесс синтеза АТФ, основным субстратом для которого служит гликоген. Однако в ходе анаэробного окисления образуется значительно меньше молекул АТФ, чем при аэробном окислении субстратов метаболизма. Энергия АТФ, синтезируемого в анаэробных условиях, оказывается недостаточной не только для обеспечения сократительной функции миокарда, но и для поддержания градиентов ионов в клетках. Уменьшение содержания АТФ сопровождается опережающим снижением содержания ФК.
Активизация анаэробного гликолиза влечет за собой накопление лактата и развитие ацидоза. Следствием дефицита макроэргических фосфатов и внутриклеточного ацидоза является нарушение АТФ-зависимых механизмов ионного транспорта, ответственных за удаление ионов кальция из клеток. Накопление ионов кальция в митоходриях приводит к разобщению окислительного фосфорилирования и усилению дефицита энергии. Увеличение концентрации ионов кальция в саркоплазме при недостатке АТФ способствует образованию прочных актиномиозиновых мостиков, что препятствует расслаблению миофибрилл.
Дефицит АТФ и избыток ионов кальция в сочетании с повышением продукции и увеличением содержания в мышце катехоламинов стимулирует «липидную триаду». Развитие «липидной триады» вызывает деструкцию липидного бислоя клеточных мембран. Все это приводит к контрактуре миофибрилл и их разрушению. Роль «ловушки ионов кальция» выполняют неорганический фосфат и другие анионы, накапливающиеся в клетке при гипоксии.
В
В
В
Существуют факторы, воздействуя на которые возможно снизить или повысить работоспособность здорового организма.
Эти факторы условно можно разделить на две группы: системные и органные.
·
Причина: широкий спектр — от генетических до инфекционных, а также допинг.
Следствие: нарушение всех видов обмена (дисбаланс метаболизма).
Выявление и контроль: гормональный профиль.
Коррекция: соответственно выявленной причине.
·
Причина: работа в гликолитическом режиме, анемия, недостаток бикарбонатов.
Следствие: изменение буферной емкости крови, накопление лактата, ацидоз.
Контроль: Ьа-крови, рН-крови, НЬ-крови.
Коррекция: увеличение буферной емкости крови, ощелачивание, снижение уровнямолочной кислоты. Препараты железа, кальция, калия, фосфора, энзимы.
·
Причина: нарушение транспорта электролитов в дыхательной цепи, недостаток и нарушение транспорта фосфокреатина.
Следствие: уменьшение мощности работы вследствие снижения сократимости мышц.
Контроль: концентрация креатинфосфокиназы (КФК).
Коррекция: макроэрги, фосфагены, дыхательные ферменты, антигипоксанты, препараты железа.
·
Причина: недостаток гликогена, АТФ, фосфокреатина, липидов, протеинов.
Следствие: уменьшение мощности работы вследствие снижения сократимости мышц.
Контроль: основной обмен, гликемический профиль, биохимия спорта, ЭКГ.
Коррекция: углеводное насыщение. Инициация углеводного, липидного обмена, фосфокреатина. неотон, милдронат, нейробутал, оксибутират натрия, антигипоксанты.
·
Причина: запредельные физические нагрузки. Недостаток антиоксидантов. Образование токсических продуктов (прооксидантов).
Следствие: нарушение функций митохондрий, клеточных мембран.
Контроль: определение уровня перекисного окисления (ПОЛ) методом хемилюминесценции.
Коррекция: антиоксиданты.
·
Причина: запредельная физическая нагрузка при неблагоприятных внешних факторах, которая приводит к повреждению эндотелия сосудов, запускаются механизмы нарушения баланса свертывающей-противосвертыва-ющей систем.
Следствие: тканевая гипоксия. Развитие диссемини-рованного внутрисосудистого свертывания (ДВС-син-дрома). Нарушение функций внутренних органов: сердца, печени, почек и т. д.
Контроль: рН крови, гематокрит, коагулограмма, лейкоформула, анализ мочи, ЭКГ.
Коррекция: препараты, улучшающие микроциркуляцию и реологические свойства крови: актовегин, солко-серил, трентал, танакан, дезагреганты (папаверин, эуфил-лин) и т. д.
·
Причина: запредельная физическая нагрузка, неблагоприятные метеоклиматические условия.
Следствие: подверженность заражению любым инфекционным заболеванием.
Контроль: иммунологический контроль.
Коррекция: иммуномодуляторы, энзимы, адаптоге-ны, биостимуляторы.
·
Причина: нагрузка, выходящая за пределы физиологической нормы.
Следствие: перетренировка — «спортивная болезнь», нарушение динамики психологического состояния спортсмена.
Контроль: психотесты, время стартовой реакции, скорость проведения импульса.
Коррекция: психоседативные средства, транквилизаторы, средства коррекции нарушений сна, средства, тормозящие вовлечение в эмоции вегетативных центров.
·
Контроль: ЭКГ, эхо-КГ, функциональные пробы.
·
Контроль: пиковая скорость выдыхаемого воздуха (пикфлоуметрия), форсированная жизненная емкость легких (ФЖЕЛ).
·
Контроль: УЗИ, реография, биохимия и т. д. IV.
·
Контроль: травматолог-ортопед.
Кроме того, в анализе, контроле и коррекции работоспособности ведущих систем организма необходимо учитывать и их обобщающие свойства:
— резервные возможности — емкость;
— реализуемость — мощность и мобилизуемость;
— эффективность — экономичность.
·
— возможные сбои: отдых, сон, смена часовых поясов, «зимнее», «летнее» время и просто «нарушения режима».
·
— не соответствует виду спорта;
— несбалансирована по энергии (ккал);
— нет соответствия тренировочному процессу (углеводный период, белковый период);
— несбалансированное потребление белков, жиров, углеводов;
— нет углеводной подпитки на тренировке;
— не соблюдается время приема пищи (режим);
— несовместимость пищевых ингредиентов;
— бессистемное потребление минеральной воды;
— потребление некачественной воды. Диету профессионал соблюдает все 365 дней в году, а не только в период подготовки к соревнованиям.
·
·
— уменьшается скорость сложных двигательных реакций, точность мышечных усилий;
— появляется дисбаланс процессов возбуждения и торможения в ЦНС;
— уменьшается накопление гликогена в печени; при больших нагрузках высока опасность гепатита;
— нарушается обмен витаминов группы В, микроэлементов;
— увеличивается свертываемость крови;
— возможна сосудистая дистония;
— тахикардия;
— замедляются процессы восстановления;
— снижаются волевые качества спортсмена.
— замедляется рост в подростковом возрасте;
— понижается умственная и физическая работоспособность;
— уменьшается скорость сложной двигательной реакции, точность мышечных усилий;
— на 10 % уменьшается способность усваивать кислород, а следовательно, возрастает нагрузка на сердце;
— исчерпываются запасы витаминов С, Е, А;
— увеличивается склонность к спазмам сосудов;
— увеличивается склонность к заболеваниям бронхов, легких, желудка вследствие повреждения слизистых.
— бытовая химия;
— некачественная питьевая вода;
— нитраты в продуктах.
— хлор-плавание;
— смеси для дыхания — подводное плавание;
— пороховые газы — стендовая, пулевая стрельба;
— синтетические покрытия — залы, дорожки; прочие.
·
Спортсмены, тренирующиеся в городских условиях, испытывают на себе влияние различных загрязнителей, которые могут оказывать свое воздействие на спортивные результаты. Особенно пагубны тренировки вблизи промышленных предприятий, автодорог. Самые распространенные атмосферные загрязнители: окись углерода, озон, серные окиси, азотные окиси и перекисные ацетил-нитраты.
Спортивные сооружения (стадионы, дворцы спорта, спортзалы, места проведения соревнований) должны иметь экологический паспорт с указанием концентрации тех или иных веществ в течение суток. В соответствии с этим можно рассчитать причиненный здоровью ущерб: концентрация отравляющего вещества, умноженная на объем легочной вентиляции, умноженная на частоту дыхания.
·
— кариес;
— бессимптомные или малосимптомные заболевания уха, горла, носа, печени, почек, кишечника;
— грибковые поражения кожи.
·
·
·
·
— травмы, плоскостопие, сколиоз, остеохондроз, остеопороз, перегрев, отморожения и т. д.
·
— травмы
·
— обезвоживание, тепловые болезни, травмы.
— обезвоживание, гипотермия, обморожение.
— обезвоживание, гипотермия, перетренировка
·
При достаточно высокой осведомленности спортсмена в ряде вопросов медико-биологической направленности.
·
— необоснованное применение — не по показаниям;
— несоблюдение дозировки;
— полипрагмазия, т. е. назначение большого числа препаратов (в этом случае — антагонизм, потенцирование);
— допинг.
·
© 2024 Библиотека RealLib.org (support [a t] reallib.org) |