"Е.М.Миркес. Учебное пособие по курсу Нейроинформатика " - читать интересную книгу авторарис. 11б. Пять классов третьего уровня - на рис. 13а.
Рис. 14. Классификации на два класса Рис. 15. Типы классификаций на три класса Рис. 16. Типичные классификации на четыре класса Проведем туже процедуру для множества точек, приведенного на рис. 10б. При классификации на два класса получим четыре типичных варианта классификаций, приведенных на рис. 14. Всего получено 14 классов. Два класса были получены по 69 раз, два по 18 раз. Остальные не более 6 раз. Проведем классификацию на три класса. Получим всего два типа классификаций, приведенных на рис. 15. Всего получено 12 классов. Одна тройка классов была воспроизведена 14 раз, вторая - 26 раз, третья - 27 и четвертая - 33 раза. После классификации на четыре класса получены четыре типичных классификации, приведенные на рис. 16. Всего получено 54 класса. Пять из них получены 36, 37, 36, 36 и 57 раз. Еще 4 класса получены 14 раз, два класса - 10 раз, остальные не более 6 раз. При классификации на пять классов получено семь типичных классификаций, приведенных на рис. 17. Всего было получено 49 классов. При этом пять классов были получены 91, 82, 87, 92 и 82 раза. Еще один класс - 8 раз. Остальные классы не более 3 раз. Увеличился разрыв между "редкими" и "частыми" классами. Сократилось число часто повторяющихся классов. Для контроля проведем классификацию на 6 классов. Всего получено 117 классов. Из них пять были получены 86, 81, 57, 76 и 69 раз. Все остальные классы были получены не более 9 раз. Таким образом, на основе классификаций на четыре, пять и шесть классов можно утверждать, что "реально" существует пять классов. Методы отжига Предложенный метод перебора количества классов хорошо работает при небольшом "реальном" числе классов. При достаточно большом числе классов и большом объеме множества точек, которые необходимо разбить на классы, такая процедура подбора становится слишком медленной. Действительно, число пробных классификаций должно быть сравнимо по порядку величины с числом точек. В результате получается большие вычислительные затраты, которые чаще всего тратятся впустую (важны несколько значений числа классов вблизи "реального" числа классов). Альтернативой методу перебора служит метод отжига. Идея метода отжига состоит в том, что на основе критерия качества класса принимается решение об удалении этого класса, разбиении класса на два или о слиянии этого класса с другим. Если класс "хороший", то он остается без изменений. Существует много различных критериев качества класса. Рассмотрим некоторые из них. 1. Количественный критерий. Класс, в котором менее N точек считается пустым и полежит удалению. Порог числа точек выбирается из смысла задачи и вида меры близости. 2. Критерий равномерности. Средняя мера близости точек класса от ядра должна быть не менее половины или трети от максимума меры близости точек от |
|
|