"Ричард Фейнман. Surely You're Joking, Mr. Feynman!/Вы, конечно, шутите, мистер Фейнман! (англ.)" - читать интересную книгу автора

Actually, there was a certain amount of genuine quality to my guesses.
I had a scheme, which I still use today when somebody is explaining
something that I'm trying to understand: I keep making up examples. For
instance, the mathematicians would come in with a terrific theorem, and
they're all excited. As they're telling me the conditions of the theorem, I
construct something which fits all the conditions. You know, you have a set
(one ball) - disjoint (two balls). Then the balls turn colors, grow hairs,
or whatever, in my head as they put more conditions on. Finally they state
the theorem, which is some dumb thing about the ball which isn't true for my
hairy green ball thing, so I say, "False!"
If it's true, they get all excited, and I let them go on for a while.
Then I point out my counterexample.
"Oh. We forgot to tell you that it's Class 2 Hausdorff homomorphic."
"Well, then," I say, "It's trivial! It's trivial!" By that time I know
which way it goes, even though I don't know what Hausdorff homomorphic
means.
I guessed right most of the time because although the mathematicians
thought their topology theorems were counterintuitive, they weren't really
as difficult as they looked. You can get used to the funny properties of
this ultra-fine cutting business and do a pretty good job of guessing how it
will come out.
Although I gave the mathematicians a lot of trouble, they were always
very kind to me. They were a happy bunch of boys who were developing things,
and they were terrifically excited about it. They would discuss their
"trivial" theorems, and always try to explain something to you if you asked
a simple question.
Paul Olum and I shared a bathroom. We got to be good friends, and he
tried to teach me mathematics. He got me up to homotopy groups, and at that
point I gave up. But the things below that I understood fairly well.
One thing I never did learn was contour integration. I had learned to
do integrals by various methods shown in a book that my high school physics
teacher Mr. Bader had given me.
One day he told me to stay after class. "Feynman," he said, "you talk
too much and you make too much noise. I know why. You're bored. So I'm going
to give you a book. You go up there in the back, in the corner, and study
this book, and when you know everything that's in this book, you can talk
again."
So every physics class, I paid no attention to what was going on with
Pascal's Law, or whatever they were doing. I was up in the back with this
book: Advanced Calculus, by Woods. Bader knew I had studied Calculus for the
Practical Man a little bit, so he gave me the real works - it was for a
junior or senior course in college. It had Fourier series, Bessel functions,
determinants, elliptic functions - all kinds of wonderful stuff that I
didn't know anything about.
That book also showed how to differentiate parameters under the
integral sign - it's a certain operation. It turns out that's not taught
very much in the universities; they don't emphasize it. But I caught on how
to use that method, and I used that one damn tool again and again. So
because I was self-taught using that book, I had peculiar methods of doing
integrals.