"Ричард Фейнман. Surely You're Joking, Mr. Feynman!/Вы, конечно, шутите, мистер Фейнман! (англ.)" - читать интересную книгу автора

along with another fella who was a salesman. I was the "chief research
chemist," and my friend's brother, who was not very clever, was the
bottle-washer. We had six metal-plating baths.
They had this process for metal-plating plastics, and the scheme was:
First, deposit silver on the object by precipitating silver from a silver
nitrate bath with a reducing agent (like you make mirrors); then stick the
object, with silver on it as a conductor, into an electroplating bath, and
the silver gets plated.
The problem was, does the silver stick to the object?
It doesn't. It peels off easily. So there was a step in between, to
make the silver stick better to the object. It depended on the material. For
things like Bakelite, which was an important plastic in those days, my
friend had found that if he sandblasted it first, and then soaked it for
many hours in stannous hydroxide, which got into the pores of the Bakelite,
the silver would hold onto the surface very nicely.
But it worked only on a few plastics, and new kinds of plastics were
coming out all the time, such as methylmethacrylate (which we call
plexiglass, now), that we couldn't plate, directly, at first. And cellulose
acetate, which was very cheap, was another one we couldn't plate at first,
though we finally discovered that putting it in sodium hydroxide for a
little while before using the stannous chloride made it plate very well.
I was pretty successful as a "chemist" in the company. My advantage was
that my pal had done no chemistry at all; he had done no experiments; he
just knew how to do something once. I set to work putting lots of different
knobs in bottles, and putting all kinds of chemicals in. By trying
everything and keeping track of everything I found ways of plating a wider
range of plastics than he had done before.
I was also able to simplify his process. From looking in books I
changed the reducing agent from glucose to formaldehyde, and was able to
recover 100 percent of the silver immediately, instead of having to recover
the silver left in solution at a later time.
I also got the stannous hydroxide to dissolve in water by adding a
little bit of hydrochloric acid - something I remembered from a college
chemistry course - so a step that used to take hours now took about five
minutes.
My experiments were always being interrupted by the salesman, who would
come back with some plastic from a prospective customer. I'd have all these
bottles lined up, with everything marked, when all of a sudden, "You gotta
stop the experiment to do a 'super job' for the sales department!" So, a lot
of experiments had to be started more than once.
One time we got into one hell of a lot of trouble. There was some
artist who was trying to make a picture for the cover of a magazine about
automobiles. He had very carefully built a wheel out of plastic, and somehow
or other this salesman had told him we could plate anything, so the artist
wanted us to metal-plate the hub, so it would be a shiny, silver hub. The
wheel was made of a new plastic that we didn't know very well how to plate
- the fact is, the salesman never knew what we could plate, so he was
always promising things - and it didn't work the first time. So, to fix it
up we had to get the old silver off, and we couldn't get it off easily. I
decided to use concentrated nitric acid on it, which took the silver off all