"Bruce Sterling - Magnetic Vision" - читать интересную книгу автора (Sterling Bruce)healthy and perfectly normal -- anatomically at least. (For a science
fiction writer this news is something of a letdown.) The discovery of X-rays in 1895, by Wilhelm Roentgen, led to the first technology that made human flesh transparent. Nowadays, X-rays can pierce the body through many different angles to produce a graphic three-dimensional image. This 3-D technique, "Computerized Axial Tomography" or the CAT-scan, won a Nobel Prize in 1979 for its originators, Godfrey Hounsfield and Allan Cormack. Sonography uses ultrasound to study human tissue through its reflection of high-frequency vibration: sonography is a sonic window. Magnetic resonance imaging, however, is a more sophisticated window yet. It is rivalled only by the lesser-known and still rather experimental PET-scan, or Positron Emission Tomography. PET- scanning requires an injection of radioactive isotopes into the body so that their decay can be tracked within human tissues. Magnetic resonance, though it is sometimes known as Nuclear Magnetic Resonance, does not involve radioactivity. The phenomenon of "nuclear magnetic resonance" was discovered in 1946 by Edward Purcell of Harvard, and Felix Block of Stanford. Purcell and Block were working separately, but published their findings within a month of one another. In 1952, Purcell and If an atom has an odd number of protons and neutrons, it will have what is known as a "magnetic moment:" it will spin, and its axis will tilt in a certain direction. When that tilted nucleus is put into a magnetic field, the axis of the tilt will change, and the nucleus will also wobble at a certain speed. If radio waves are then beamed at the wobbling nucleus at just the proper wavelength, they will cause the wobbling to intensify -- this is the "magnetic resonance" phenomenon. The resonant frequency is known as the Larmor frequency, and the Larmor frequencies vary for different atoms. Hydrogen, for instance, has a Larmor frequency of 42.58 megahertz. Hydrogen, which is a major constituent of water and of carbohydrates such as fat, is very common in the human body. If radio waves at this Larmor frequency are beamed into magnetized hydrogen atoms, the hydrogen nuclei will absorb the resonant energy until they reach a state of excitation. When the beam goes off, the hydrogen nuclei will relax again, each nucleus emitting a tiny burst of radio energy as it returns to its original state. The nuclei will also relax at slightly different rates, depending on the chemical circumstances around the hydrogen atom. Hydrogen behaves differently in different kinds of human tissue. Those relaxation bursts can be detected, and timed, and mapped. |
|
|