"Черная маска из Аль-Джебры" - читать интересную книгу автора (Левшин Владимир Артурович, Александрова М.)

Разноцветные береты (Нулик — отряду РВТ)

Дорогие ребята! Как мне досадно, как мне обидно, что я не смог побывать на стадионе и увидать карнавал!

Но зато я сделал важное открытие. То есть открытие сделала мама. И вообще это не открытие, а давно известная вещь. Но для меня она была открытием.

Дело было так.

Мои ученики тоже решили устроить карнавал. И семь Нуликов явились в школу в новеньких беретах, — все береты разных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Словом, семь цветов радуги. Нулики в беретах должны были идти во главе карнавального шествия. Но мне не понравилось, в каком порядке они стоят. Мне показалось, что красный берет должен быть рядом с синим, а синий — с оранжевым. А другому Нулику захотелось, чтобы желтый был рядом с фиолетовым. Тут каждый стал вносить свои предложения:

— Желтый с красным!

— Красный с синим!

— Фиолетовый с желтым!

Все так расшумелись, что я долго не мог их успокоить. Порешили перепробовать все перестановки. А потом большинством голосов выбрать самую красивую.

И началось! Расставили Нуликов так, как они стояли вначале: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Потом Нулики стали меняться местами. Красный оказался на месте оранжевого, потом перешел на место желтого, потом на место зеленого и так до тех пор, пока он не очутился на месте фиолетового. Теперь впереди оказался Нулик в оранжевом берете. Мы стали его тоже постепенно передвигать вправо. Так же поступили и с зеленым, и со всеми остальными. А когда красный берет опять оказался первым слева, мы решили его оставить на месте, и стали двигать вправо другие береты: желтый, зеленый, синий… Переставляем, переставляем… Второй день переставляем. О карнавале никто уж не заикается. Сделали 527 перестановок, а до конца — далеко.

Мы было хотели бросить, но тут появилась моя мама. Пришлось рассказать, в чем дело. А она давай смеяться! А когда отсмеялась, спросила:

— Неужели вы не знаете, что такое факториал?

— Знаю! — выпалил я, вспомнив ваше письмо. — Это оркестр восклицательных знаков.

Мама стала смеяться снова. А потом сказала, что факториалы могут, конечно, играть в оркестре. Но это не мешает им оставаться математическим знаком. Его ставят после какого-нибудь числа. И тогда он показывает, сколько чисел натурального ряда надо перемножить. Вот например: если написать 3! — значит, надо перемножить все числа натурального ряда от единицы до трех включительно: 3! = 1 #215; 2 #215; 3 = 6

А записывается это так, чтобы было покороче. Задумали перемножить числа от единицы до миллиона — пожалуйста: пишем 1000000! Коротко и ясно.

А еще мама сказала, что слово «факториал» произошло от латинского слова «фактор». По-нашему это «производящий действие». Вот факториал и производит перемножение чисел натурального ряда.

Ну, это я запомнил сразу. Одного только никак не мог понять: при чем здесь разноцветные береты?

— А вот при чем, — сказала мама. — Если вы хотите узнать, сколько раз надо переставить семь Нуликов в разноцветных беретах, чтобы сделать все возможные перестановки, надо вычислить факториал числа семь, то есть перемножить все числа натурального ряда от единицы до семи. Стали перемножать и получили большущее число: 7! = 1 #215; 2 #215; 3 #215; 4 #215; 5 #215; 6 #215; 7 = 5040.

Пять тысяч сорок! Пять тысяч сорок перестановок! А мы сделали всего 527. Ужас!…

Хорошо, что в разноцветных беретах явились всего семь Нуликов. А что если бы двадцать семь? Пришлось бы вычислять факториал двадцати семи. Нет уж, дудки! Хотите — считайте сами. А я не буду.

Всего вам хорошего. С нетерпением жду новых сообщений.

Нулик-Факториал.