"Удивительная механика" - читать интересную книгу автора (Гулиа Нурбей Владимирович)

Быстрее крутить нельзя

Все, что я прочел про маховики, все, что продумал за это время, помогло мне поверить в большие возможности этих накопителей энергии. Однако повысить плотность энергии маховика в 100 раз — дело нешуточное. Что же мешает решить эту задачу? Попробуем разобраться.

Швейцарский гиробус проходил до остановки 6 км. Четыре из них он шел с приличной скоростью, вполне вписываясь в городское движение. Но почему не больше? Почему, например, не 20 км, что позволило бы открыть в городах линии маховичных автобусов без двигателя и без горючего?

Чтобы пройти впятеро больший путь, гиробус должен запасти во столько же раз больше энергии. Для этого совершенно не обязательно крутить маховик в пять раз быстрее, достаточно увеличить частоту вращения в 2,24 раза, то есть нужно разогнать маховик гиробуса до 6–7 тыс. оборотов в минуту. Казалось бы, чего проще? А вот ученые утверждают, что это совсем не так просто.


Испытуемый маховик Стенд для испытаний маховиков на разрыв

Обычно опыты с маховиками проводят на специальном стенде, помещенном глубоко под землей. Маховик там подвешивают в особой камере, из которой выкачивают воздух. Крутят маховик воздушной турбиной, если он легкий, или мощным электромотором, если он тяжелый, как маховик гиробуса.

До 4–5 тыс. оборотов в минуту маховик сохраняет свои исходные размеры — если его остановить и измерить самыми точными приборами, все будет как прежде. Но уже при частоте вращения, близкой к 5 тыс. оборотов в минуту, маховик как бы «раздается» в стороны, его диаметр сильно увеличивается, и после остановки маховик не возвращается к прежним размерам. Чем это вызвано?

Из физики известно, что каждое массивное тело стремится либо двигаться равномерно и прямолинейно, либо находиться в покое. При вращении маховика сила сцепления его частиц, определяющая прочность данного материала, заставляет эти частицы сворачивать со своего «естественного» прямолинейного пути и «ходить по кругу». И частицы начинают «растягивать» маховик, пытаясь его разорвать, что дало бы им возможность двигаться равномерно и прямолинейно.

Теперь находиться вблизи маховика чрезвычайно опасно. Совсем небольшого увеличения скорости вращения может оказаться достаточно, чтобы маховик вдруг резко вытянулся и разорвался, как точильный круг. Только если осколки точильного круга легко удерживаются тоненькими защитными кожухами, то осколки маховика, массой по полтонны (а маховики почему-то чаще всего разрываются на три части), способны наделать много бед. Я слышал, что при разрыве маховика в подвале одной старой фабрики осколок пробил все междуэтажные перекрытия и вылетел наружу, а уже падая, еще раз пробил крышу.

Маховик гиробуса в момент разрыва обладает энергией, которой хватило бы для пробега машины на 12–18 км. Но не доводить же маховик каждый раз до опасного предела. Поэтому, как правило, прочность маховика используют всего на 1/3, что во столько же раз снижает его энергоемкость, а стало быть, и пробег гиробуса. Вот откуда те самые 4–6 км, о которых упоминалось выше.

Итак, по каким причинам нельзя накопить в обычном маховике больше энергии? Во-первых, это малая прочность материала, из которого он изготовлен. Крупные отливки или поковки даже из лучших сортов стали не слишком прочны. В таких изделиях невозможно избежать мельчайших дефектов, сильно уменьшающих прочность всего маховика. Во-вторых, чем прочнее литой или кованый маховик, тем опаснее последствия в случае его разрыва, и тем больше запас прочности следует закладывать при его проектировании.

«А что, если изменить форму маховика? — подумал я. — Например, разместить всю массу на периферии, превратив маховик в тяжелый обод, связанный с центральной частью тонкими спицами, как в велосипедном колесе?»

Оказывается, специалисты уже это сделали. По сравнению с кругом древнего гончара и впрямь получилось лучше. Такой маховик накапливал энергии в каждом килограмме своей массы раза в полтора больше. Еще лучше накапливал энергию маховик в виде диска без отверстия, но к нему трудно крепить вал. Однако потом точные расчеты показали, что выгоднее помещать массу не дальше от центра, а, наоборот, ближе к центру, вследствие чего появились маховики, тонкие по краям и утолщающиеся к середине, — диски «равной прочности». Как это ни удивительно, но энергии они могли накопить в два раза больше, чем обод со спицами, и в три раза больше, чем гончарный круг, при той же массе маховика.


Маховики различных форм

Так я пришел к важному для себя заключению: энергия каждого килограмма массы маховика зависит от его формы и прочности! Уже позже, по окончании института, я доказал математически существование этой зависимости, но еще раньше, в школьные годы, подсчитал, что если при изменении формы маховика — от самой худшей к самой лучшей — энергия возрастет незначительно, максимум в три раза, то при многократном повышении прочности во столько же раз увеличится и плотность энергии, причем это увеличение ничем не ограничено. Правда, тут получался порочный круг. Непрочный, например глиняный, маховик накапливает мало энергии, но разрыв его не так уж опасен, а прочный, скажем, стальной, может накопить большую энергию, однако разрыв его столь опасен, что приходится заботиться о повышении запаса прочности. А это опять-таки равносильно снижению прочности.

Конструкторам маховиков никак не удавалось вырваться из этого замкнутого круга, поэтому маховики играли вторую, если не третью, роль среди накопителей энергии…