"Революция в физике" - читать интересную книгу автора (де Бройль Луи)Глава IV. Теория относительности1. Принцип относительностиПрежде чем говорить о развитии наших представлений о квантах, нельзя не посвятить короткую главу теории относительности. Теория относительности и кванты – это два столпа современной теоретической физики, и, хотя эта книга посвящена теории квантов, невозможно обойти молчанием и теорию относительности. Развитие теории относительности началось с изучения некоторых вопросов, связанных с оптическими явлениями, происходящими в движущихся средах. Френелево представление о свете предполагало существование эфира, заполняющего всю Вселенную и проникающего во все тела. Такой эфир играл роль среды, в которой распространялись световые волны. Электромагнитная теория Максвелла несколько ослабила значение его, так как эта теория не требует, чтобы световые колебания были колебаниями какой-либо среды. В теории Максвелла световые колебания полностью, определяются заданием векторов электромагнитного поля. После того как все попытки механической интерпретации законов электродинамики потерпели неудачу, поля в максвелловой теории в конце концов стали рассматривать как исходные понятия, которые бесполезно пытаться перевести на язык механики. С этого момента исчезла какая бы то ни была необходимость предполагать существование упругой среды, передающей электромагнитные колебания, и можно было подумать, что понятие эфира становится бесполезным. В действительности же это было не совсем так, и последователи Максвелла, в частности Лоренц, вынуждены были снова поднять вопрос об эфире. В чем же было дело? Почему пришлось продолжить разговор об эфире? Потому что уравнения электродинамики Максвелла не удовлетворяли принципу относительности классической механики. Иными словами, будучи справедливыми в одной какой-либо системе координат, они становились неверными в другой системе координат, движущейся прямолинейно и равномерно относительно первой. По крайней мере, если допустить (что представлялось тогда само собой разумеющимся), что при переходе от одной системы к другой координаты заменяются так, как это обычно делается в аналогичных случаях в классической механике. Действительно, классическая механика исходит из существования некоего абсолютного времени, единого для всех наблюдателей и для всех систем отсчета. В ней предполагается также, что расстояние между двумя точками пространства является инвариантом, т е. должно иметь одно и то же значение во всех системах координат, которые можно использовать для определения положения точек в пространстве. Из этих двух принципов, которые казались вполне естественными, непосредственно следовали простые классические формулы преобразования координат при переходе от одной системы отсчета к другой, которая движется относительно первой прямолинейно и равномерно. Эти формулы определяют так называемое преобразование Галилея. Одним из основных положений классической механики является требование, чтобы все ее уравнения были инвариантны относительно преобразования Галилея. И действительно, пользуясь формулами преобразования Галилея, легко убедиться, что если уравнения Ньютона справедливы в системе координат, связанной с неподвижными звездами, то они будут справедливы также и во всех других системах отсчета, движущихся прямолинейно и равномерно относительно этих неподвижных звезд. Напротив, уравнения Максвелла и Лоренца, существенно отличающиеся по своей форме от уравнений классической механики, не инвариантны относительно преобразования Галилея. Следовательно, если уравнения Максвелла справедливы в какой-либо одной системе координат, то они становятся несправедливыми при переходе к другой, движущейся относительно первой прямолинейно и равномерно. Дело обстоит так, как если бы существовала некая среда, заполняющая всю Вселенную, такая, что уравнения Максвелла справедливы только в одной, связанной с этой средой системе отсчета. Именно с этой средой отсчета ассоциировали последователи Максвелла понятие эфира. Эфир не был для них уже упругой средой с особыми свойствами, способной передавать световые колебания. Он стал абстрактной, весьма условной средой, служащей лишь для фиксации систем отсчета, в которых справедливы уравнения электродинамики Максвелла. Но даже сведенный до такой незначительной роли эфир все же оставался, как мы уже сказали, довольно неудобной концепцией. Действительно, согласно теории Максвелла – Лоренца, для наблюдателя, движущегося относительно эфира, световые явления должны были бы протекать иначе, чем для неподвижного. Следовательно, изучение этих явлений в движущейся системе координат должно было позволить определить скорость этой системы координат относительно эфира, который таким образом приобретает уже некоторое более конкретное содержание. В частности, физики, работающие в своих лабораториях на Земле, вследствие вращения Земли вокруг Солнца находятся в постоянном движении, направление которого периодически меняется со временем года, поскольку Земля движется вокруг Солнца приблизительно по круговой орбите. И если, по невероятной случайности, в какой-то момент времени земной наблюдатель находится в покое относительно эфира, то уже через несколько недель или месяцев он будет двигаться относительно него с довольно большой скоростью. Таким образом, с помощью нескольких, проведенных последовательно друг за другом экспериментов можно было бы весьма точно определить скорость Земли относительно эфира. Однако ни один из многочисленных экспериментов, поставленных учеными XIX в. с целью определения движения Земли относительно эфира, не позволил «почувствовать» движения Земли. Тем не менее в течение долгого времени это отсутствие результата можно было увязать с теорией, поскольку предсказываемый эффект был весьма мал, а точность поставленных оптических экспериментов была недостаточно высока и не позволяла сделать вполне определенных выводов. Действительно, можно показать, что движение наблюдателя по отношению к эфиру приводит к поправкам, пропорциональным квадрату отношения скорости движения наблюдателя к скорости света в пустоте. Поскольку же это отношение всегда очень мало, то и ожидаемый эффект также очень мал. Но физики, постоянно совершенствуя технику эксперимента, получили, наконец, возможность измерять столь слабые эффекты. Теперь уже с помощью опытов по интерференции с полной уверенностью можно было сказать, зависят результаты экспериментов от скорости Земли относительно эфира или нет. И опыт снова дал, на этот раз уже определенно, отрицательный ответ: ожидаемый эффект, хотя и очень малый, но все же лежащий в пределах точности наблюдений, который предсказывала теория, обнаружить не удалось. Эфир продолжал оставаться неуловимым, что теперь уже явно противоречило классической теории. Этот чрезвычайно важный вывод позволил сделать знаменитый опыт Майкельсона, проведенный в 1881 г. и повторенный им несколько позже вместе с Морли. Другие опыты, которые тоже должны были обнаружить движение Земли относительно эфира с помощью уже не оптических, но электромагнитных явлений (опыты Траутона и Нобеля), были не более успешны, чем опыт Майкельсона. Само собой разумеется, было сделано немало попыток согласовать отрицательный результат опыта Майкельсона с существующими теориями. В частности, Фицджеральд и Лоренц выдвинули гипотезу о сокращении материальных тел при их движении относительно эфира. Это сокращение, не меняя поперечных размеров, должно приводить к сокращению линейных размеров тел в направлении их движения относительно эфира и, таким образом, точно компенсировать влияние относительного движения на скорость распространения света. Но эта остроумная гипотеза носила, очевидно, весьма искусственный характер и, казалось, была выдвинута с единственной целью скрыть неудачу. И, как известно, лишь Альберт Эйнштейн нашел истинное решение этого вопроса (1905 г.). Казалось совершенно очевидно, что уравнения электродинамики Максвелла – Лоренца должны позволить с помощью соответствующим образом поставленных экспериментов определить движение наблюдателя по отношению к эфиру. Причина такой уверенности заключалась в том, что уравнения Максвелла меняют свой вид при переходе от одной системы координат к другой, движущейся относительно первой. Но при этом a priori допускалось, что координаты какого-либо тела, измеренные в двух системах координат, движущихся относительно друг друга прямолинейно и равномерно, связаны между собой формулами преобразования Галилея. Итак, уравнения Максвелла – Лоренца не инвариантны относительно преобразований Галилея. А раз это так, то эксперименты должны позволить определить движение Земли относительно эфира. Но опыт свидетельствовал, что движение Земли не сказывается на электродинамических явлениях. Как показал Лоренц, хотя уравнения электродинамики не инвариантны относительно преобразования Галилея, они инвариантны относительно некоторого другого линейного преобразования координат, имеющего несколько более сложный вид, чем преобразование Галилея, и носящего ныне название преобразований Лоренца. Вначале этот факт казался просто математическим курьезом, а преобразования Лоренца, казалось, не имели никакого физического смысла. Но Эйнштейн исходил из обратного. Он предположил, что преобразование Лоренца отражает действительную физическую реальность и связывает координаты, измеренные двумя наблюдателями, движущимися равномерно и прямолинейно Друг относительно друга (если, конечно, оба они движутся прямолинейно и равномерно относительно системы координат, связанной с неподвижными звездами). И как раз не преобразование. Галилея, а именно преобразование Лоренца имеет точный физический смысл. Тогда из инвариантности уравнений электродинамики относительно преобразования Лоренца следует, что они имеют одинаковый вид во всех системах координат, движущихся прямолинейно и равномерно относительно неподвижных звезд. А значит, все электромагнитные и оптические явления будут протекать совершенно одинаково независимо от того, в какой системе координат они наблюдаются, и обнаружить по этим явлениям абсолютное движение по отношению к эфиру оказывается невозможно. Таким образом, отрицательный результат опыта Майкельсона и других опытов, поставленных с целью обнаружить движение Земли относительно эфира, становится совершенно естественным. И если принять теперь относительность всех оптических и электромагнитных явлений (в том же смысле, в каком классическая механика понимает относительность всех механических явлений), то отсюда с необходимостью будет следовать, что не преобразование Галилея, а именно преобразование Лоренца выражает точную связь между двумя различными наблюдателями, движущимися прямолинейно и равномерно Друг относительно друга. Важно было понять причины, по которым преобразования Галилея необходимо заменить преобразованием Лоренца, и выяснить физические следствия этой замены. Это сделал Эйнштейн при помощи тонкой и глубокой критики понятий пространства и времени. Такая критика была совершенно необходима, поскольку преобразование Лоренца влекло за собой целый ряд следствий, казавшихся тогда совершенно парадоксальными. Действительно, из преобразования Лоренца следовало, что, с одной стороны, не существует абсолютного времени, т е. два наблюдателя, движущихся друг относительно друга, пользуются различным временем, а с другой стороны, что расстояние между двумя материальными точками также не имеет абсолютного характера и различно для различных наблюдателей. Из постулата об абсолютности времени и пространства следует преобразование Галилея. Если же принять преобразования Лоренца, то нужно отказаться от этих, казавшихся столь естественными постулатов. Чтобы прояснить этот трудный вопрос, Эйнштейн провел глубокий критический анализ экспериментальных методов измерения пространства и времени. При этом в качестве основного положения он принял постулат, согласно которому ни какая энергия, никакой сигнал не может распространяться, со скоростью, превышающей скорость света в пустоте, а скорость распространения света в пустоте постоянна и не зависит от направления распространения. Существование этой верхней границы для скорости распространения сигналов позволило вывести формулы преобразования Лоренца и понять их физический смысл. Прежде всего, Эйнштейн поставил перед собой вопрос, каким образом должны быть синхронизованы в некоторой данной системе отсчета различные часы, по которым измеряется время в различных точках этой системы. Поскольку невозможно непосредственно сравнить между собой часы, расположенные в различных точках пространства, то для их синхронизации необходимо использовать тот или иной метод сигнализации. Синхронизовав все часы в какой-либо рассматриваемой системе координат, можно сказать, что таким образом мы определили собственное время этой системы координат. Но синхронизованные таким образом часы оказываются таковыми только в одной системе координат, именно в той, в которой проводилась синхронизация (а также, разумеется, во всех системах координат, покоящихся относительно этой). При этом, что очень существенно, оказывается невозможно ввести никакое абсолютное время, справедливое для всех систем координат. Поясним это более подробно. Пусть имеется две системы отсчета А и В, движущиеся друг относительно друга прямолинейно и равномерно. Будем предполагать, что в той и другой системе координат часы синхронизованы, т е. будем предполагать, что часы, синхронизованные между собой, расположены как в различных точках системы А, так и в различных точках системы В. В процессе движения часы, установленные в А, будут проходить мимо часов, установленных в В. Пусть теперь наблюдатели, находящиеся в системе А, в какой-либо момент времени, скажем, когда их собственные часы показывают полдень, отметят время, показываемое проходящими в этот момент мимо них часами системы координат В. Тогда окажется, что время, определенное различными наблюдателями по движущимся часам, также различно. Иначе говоря, время, определенное в один и тот же момент собственного времени системы А по различным часам системы В, оказывается различным. С другой стороны, поскольку с тем же основанием можно считать, что система А движется относительно В, то время, определяемое в один и тот же момент собственного времени В наблюдателями, находящимися в системе В, по различным часам системы А, также будет различным. Таким образом, в теории относительности понятие одновременности теряет свой абсолютный смысл: два события, происходящие в один и тот же момент времени в некоторой системе координат, будут не одновременными в другой системе координат, движущейся относительно первой. И этот, на первый взгляд столь парадоксальный вывод, как ясно показал Эйнштейн, является непосредственным следствием невозможности синхронизовать часы с помощью сигналов, распространяющихся со скоростью, превышающей скорость распространения света в пустоте. Продолжая тем же путем физическую интерпретацию преобразования Лоренца, Эйнштейн показал, что любое материальное тело, движущееся относительно наблюдателя, будет ему казаться короче (в направлении движения), чем наблюдателю, относительно которого это тело покоится, т е. наблюдателю, движущемуся вместе с этим телом. Поясним это утверждение также несколько более подробно. Пусть два наблюдателя движутся друг относительно друга равномерно и прямолинейно в некотором направлении D. Предположим, что один из наблюдателей несет с собой линейку, ориентированную параллельно D. Пусть ее длина, измеренная этим наблюдателем, равна, например, одному метру. Тогда для другого наблюдателя длина этой же линейки будет меньше метра, причем это отличие будет тем значительнее, чем больше будет скорость относительного движения. Величина этого «сокращения» движущейся линейки, вообще говоря, чрезвычайно мала и становится заметной лишь при приближении скорости относительного движения к скорости света в пустоте. Именно по этой причине такое сокращение не удавалось измерить с помощью прямого эксперимента. Однако это сокращение, имеющее практически ничтожную величину, оказалось в точности равным тому, которое предполагали Фицджеральд и Лоренц, и было как раз таким, чтобы строго объяснить отрицательный результат опыта Майкельсона. И тем не менее, несмотря на это совпадение, имеется существенная разница между сокращением по Фицджеральду – Лоренцу и сокращением по Эйнштейну. Действительно, первые рассматривали его как действительное сокращение тел, находящихся в абсолютном движении по отношению к неподвижному эфиру, тогда как второй – лишь как кажущееся движущемуся наблюдателю сокращение, связанное только с процессами измерений, которыми пользуются различные наблюдатели для измерения расстояний и промежутков времени, и преобразованием Лоренца, математически выражающим связь между результатами измерений, проделанных двумя различными, наблюдателями, находящимися в относительном движении. Кажущееся сокращение размеров сопровождается кажущимся замедлением хода часов. Наблюдатели, находящиеся, например, в системе координат А, изучая ход часов, движущихся вместе с системой В, обнаружат, что они отстают от их собственных часов, покоящихся в системе А. Иначе говоря, можно утверждать, что движущиеся часы идут медленнее неподвижных. Как показал Эйнштейн, это тоже одно из следствий преобразования Лоренца. Итак, кажущееся сокращение длин и замедление хода часов однозначно следует из новых определений пространства и времени, с которыми и связано преобразование Лоренца. И обратно, постулируя сокращение размеров и замедление хода часов, можно получить формулы преобразования Лоренца. Рассуждения, при помощи которых Эйнштейн вводит свои новые представления, порою очень хитроумны и их сложно изложить корректно. Но они совершенно безупречны, и с логической точки зрения им не может быть предъявлено ни одно серьезное возражение. В частности, теория объясняет такой на первый взгляд парадоксальный факт, что сокращение масштабов и замедление хода часов имеют взаимный характер. Если каждый из двух наблюдателей, движущихся Друг относительно друга прямолинейно и равномерно, обладает одинаковыми часами и линейками, то, произведя измерения, каждый из них обнаружит, что линейка другого короче его собственной, а часы другого отстают от его «асов. Эта взаимность, которая на первый взгляд кажется такой удивительной, становится легко понятной при более внимательном изучении теории, чего мы здесь, конечно, не можем сделать. Изменение понятий о пространстве и времени, вызванное принципом относительности Эйнштейна, привело к изменению основных принципов кинематики. В частности, закон сложения скоростей приобрел иной, несколько более сложный вид. Это в свою очередь легко позволило понять результаты опытов Физо по распространению света в движущихся диспергирующих средах. На языке теории эфира эти эксперименты можно было понять, говоря о частичном увлечении эфира движущимися телами. Опыты Физо подтвердили предложенную Френелем формулу, определяющую коэффициент увлечения как функцию показателя преломления движущейся среды. Лоренц в своей теории электронов сумел подтвердить эту формулу, но теория относительности дала ей гораздо более простое и изящное объяснение, показав, что она прямо следует из нового закона сложения скоростей. |
||
|