"Скрытые связи" - читать интересную книгу автора (Фритьоф Капра)


Глава I Природа Жизни

Прежде чем приступить к формулированию новой единой основы понимания биологических и социальных явлений, мне бы хотелось вернуться к древнему вопросу «Что такое жизнь?», посмотрев на него свежим взглядом [1]. Я должен сразу же подчеркнуть, что не намерен подходить к этому вопросу со всей возможной для человека глубиной, но собираюсь ограничиться чисто научным его рассмотрением — более того, на первых порах я буду говорить о жизни лишь как о биологическом феномене. С учетом этих оговорок указанный вопрос можно перефразировать так: «Каковы определяющие характеристики живых систем?»

Специалисты в общественных науках, вероятно, предпочли бы двигаться в противоположном направлении: сперва выяснить определяющие характеристики общественной реальности и лишь затем перейти к сфере биологического, установив надлежащее соответствие с понятиями естественных наук. Такой подход, безусловно, возможен, но для меня, получившего естественнонаучное образование и уже разработавшего новую, синтетическую концепцию жизни в этих дисциплинах, разумно начать именно отсюда, с определения жизни.

Я мог бы также указать, что общественная реальность в конечном итоге произросла из биологического мира 2–4 миллиона лет назад, когда австралопитеки (Australopithecusafarensis) начали ходить на двух ногах. Именно тогда у древних гоминидов развился сложный мозг, навыки изготовления орудий труда и язык, а беспомощность их недоношенных детенышей привела к возникновению заботливой семьи и сообществ, заложивших фундамент социальной жизни человека [2]. Таким образом, социальные явления могут быть лучше поняты, если взять за основу объединенную концепцию эволюции жизни и сознания.

Клетки

Взглянув на огромное разнообразие живых организмов — животных, растений, людей, микробов, — мы тут же сделаем важное открытие: вся биологическая жизнь состоит из клеток. Без клеток жизни на этой Земле нет. Возможно, так было не всегда, — и я еще вернусь к этому вопросу [3], — но сейчас можно сказать с уверенностью: клеточное строение присуще всему живому.

Это открытие позволяет нам придерживаться обычной для научного метода стратегии. Чтобы выяснить определяющие характеристики живого, нам следует выявить и затем изучить простейшую из систем, которая эти характеристики проявляет. Такая редукционистская стратегия оказалась в науке весьма эффективной — единственное, чего следует избегать, так это представления, будто сложная система есть всего лишь простая сумма своих более простых частей.

Нам известно, что все живые организмы представляют собой либо отдельные клетки, либо многоклеточные образования, мы знаем и то, что простейшей живой системой является клетка [4]. Если быть более точным, это бактериальная клетка. Сегодня нам известно, что все высшие формы жизни развились из бактериальных клеток. Простейшие же из этих последних принадлежат к классу крошечных сферических бактерий, именуемых микоплазмами, диаметр которых составляет менее тысячной доли миллиметра, а геном состоит из одной замкнутой петли двухнитевой ДНК [5]. Но даже в таких элементарных клетках непрерывно протекают сложные и разветвленные метаболические процессы [10], благодаря которым клетка снабжается питательными веществами, избавляется от шлаков и синтезирует из молекул пищи белки и другие свои составляющие.

Будучи элементарными клетками в смысле своей внутренней простоты, микоплазмы, однако, способны выжить лишь во вполне конкретной и довольно сложной химической среде. Как указывает биолог Гарольд Моровиц, это означает, что нам следует различать два рода клеточной простоты [6]. Внутренняя простота означает простоту биохимических процессов, протекающих внутри организма, тогда как простота экологическая означает невысокую химическую притязательность в отношении среды его обитания.

С экологической точки зрения простейшими из бактерий являются предки сине-зеленых водорослей цианобактерии, которые также отличаются почтенным возрастом: их химические следы обнаруживаются в древнейших окаменелостях. Некоторые из этих сине-зеленых бактерий способны строить свои органические компоненты исключительно из углекислоты, воды, азота и чисто минеральных веществ. Интересно, что их удивительная экологическая простота, как оказывается, требует некоторой внутренней биохимической сложности.

Экологический взгляд но природу жизни

Связь между внутренней и экологической простотой пока что весьма мало изучена — отчасти потому, что большинство биологов не привыкли смотреть на вещи под экологическим углом зрения. Как разъясняет Моровиц:

Устойчивая жизнедеятельность — это свойство экосистемы, а не отдельного организма или вида. Традиционная биология привыкла ограничиваться рассмотрением отдельных организмов, а не биологического континуума, поэтому происхождение жизни видится ей уникальным событием, в котором некий организм возникает из окружающей его среды. Напротив, экологически сбалансированный подход предполагает изучение протоэкологических циклов и соответствующих химических систем, которые должны были развиваться и устойчиво существовать одновременно с возникновением объектов, сходных с биологическими организмами |7].

Ни один организм не способен существовать в изоляции. Животные в своих энергетических потребностях зависят от фотосинтеза растений; растения зависят от производимой животными углекислоты, равно как и от азота, связываемого почвенными бактериями. Взятые же вместе, растения, животные и микроорганизмы регулируют биосферу в целом и поддерживают условия, благоприятные для жизни. Согласно выдвинутой Джеймсом Лавлоком и Линн Маргулис [8] теории Геи, эволюция первых живых организмов шла рука об руку с превращением поверхности планеты из неорганической среды в саморегулирующуюся биосферу [11]. «В этом смысле, — пишет Гарольд Моровиц, — жизнь есть свойство скорее планет, нежели отдельных организмов» [9].

Определение жизни в терминах ДНК

Давайте теперь вернемся к вопросу «Что есть жизнь?» и спросим: как работает бактериальная клетка? Каковы ее определяющие характеристики? Взглянув на клетку в электронный микроскоп, мы заметим, что в ее метаболических процессах принимают участие особые макромолекулы — громадные образования, представляющие собой длинные цепи из сотен атомов. Во всех клетках обнаруживаются два рода таких макромолекул — белки и нуклеиновые кислоты (ДНК и РНК [12]).

В бактериальной клетке имеется два основных типа белков — ферменты, действующие как катализаторы различных метаболических процессов, и структурные белки, являющиеся ее строительным материалом. В клетках высших организмов имеется также множество других типов белков, выполняющих специальные функции, — например, антитела иммунной системы и гормоны.

Поскольку большинство метаболических процессов катализируются ферментами, а выработка ферментов определяется генами, клеточные процессы являются генетически управляемыми, что придает им чрезвычайную устойчивость. Молекулы РНК служат «посыльными», перенося от ДНК необходимую для синтеза ферментов информацию и устанавливая тем самым ключевую связь между генетическими и метаболическими характеристиками клетки.

ДНК также ответственна за самовоспроизводство клетки, представляющее собой важнейшее свойство живого организма. Не будь этого свойства, любые случайно возникшие структуры, погибнув, исчезли бы с лица земли и жизнь не смогла бы развиться. Эта ключевая роль ДНК наводит на мысль, что ее следовало бы считать единственной определяющей характеристикой живого. Нельзя ли просто сказать: «Живые системы — это химические системы, которые содержат ДНК»?

Дело, однако, в том, что ДНК содержится и в мертвых клетках. Ее молекулы способны сохраняться сотни и даже тысячи лет после смерти организма. Впечатляющим примером здесь может послужить сделанное несколько лет назад сообщение немецких ученых, которым удалось определить точную последовательность генов в ДНК, извлеченной из черепа неандертальца — костей, которые мертвы уже более 100 тысяч лет [10]! Таким образом, самого по себе наличия ДНК для определения жизни недостаточно. Нам также не обойтись без описания метаболических процессов клетки — иначе говоря, способов взаимодействия макромолекул. По словам специализирующегося на молекулярной эволюции и происхождении жизни биохимика Пьера Луиджи Луизи, эти два подхода — «аминокислотный» и «клеточный» — представляют собой два основных философских и экспериментальных направления в современной науке о живом [11].

Мембраны — основа клеточной индивидуальности

Давайте теперь взглянем на клетку как на некую целостную систему. Прежде всего, клетка характеризуется наличием границы (клеточной мембраны), отделяющей собственно систему от окружающей ее среды. В области, очерченной этой границей, происходят сложные химические реакции (клеточный метаболизм), при помощи которых система обеспечивает собственную жизнедеятельность.

Большинство клеток кроме мембран имеют также и жесткую клеточную стенку, или оболочку. Это характерно для многих разновидностей клеток, но только мембраны могут считаться универсальной отличительной чертой клеточной жизни. С самого своего зарождения жизнь на Земле была связана с водой. Бактерии движутся в воде, и метаболизм внутри их мембранных оболочек также происходит в водной среде. В таких условиях клетка не может сохраняться как отдельная сущность без физического барьера, препятствующего свободной диффузии. Существование мембран, таким образом, — необходимое условие жизни клетки. Они не только универсальная черта живого; они также проявляют неизменность организационной модели во всем живом мире.

Ниже мы увидим, что особенности ее молекулярного строения содержат важные сведения о происхождении жизни [12].

Мембрана и клеточная стенка — далеко не одно и то же. В то время как последняя представляет собой жесткую структуру, мембрана всегда активна, постоянно открывается и закрывается, впуская одни вещества внутрь и выпуская другие наружу. В метаболических реакциях клетки участвует множество различных ионов [13], и мембрана, будучи полупроницаемой, контролирует и поддерживает должное их соотношение. Другая важнейшая роль мембраны состоит в постоянном откачивании избыточного кальция и поддержании таким образом необходимой для клеточного метаболизма строго определенной и очень низкой концентрации этого элемента. Вся эта деятельность направлена на то, чтобы сохранить клетку как отдельную сущность и защитить ее от вредных воздействий извне. Собственно говоря, первое, что делает бактерия, подвергшись атаке со стороны другого организма, — это выстраивает мембраны [13].

Все ядерные клетки, и даже большинство бактерий, обладают также внутренними мембранами. В учебниках растительную или животную клетку обычно изображают в виде большого диска, окруженного клеточной мембраной, внутри которого присутствуют диски меньшего размера (органеллы), каждый из которых в свою очередь окружен мембраной [14]. В действительности эта картина не совсем точна. В клетке нет отдельных мембран; в ней имеется единая взаимосвязанная мембранная структура. Эта так называемая «эндомембранная система» все время находится в движении, обволакивая собой все органеллы и располагаясь вдоль клеточной стенки. Это движущаяся «конвейерная лента», которая постоянно формируется, разрушается и формируется вновь [15].

Посредством своей многообразной деятельности мембрана регулирует молекулярный состав клетки и тем самым поддерживает ее индивидуальность. Здесь можно провести интересную параллель с современными иммунологическими представлениями. Некоторые иммунологи считают, что ключевая роль иммунной системы состоит в регулировании молекулярного состава организма как целого для поддержания его «молекулярного своеобразия» [16]. На клеточном уровне ту же роль играет мембрана. Регулируя молекулярный состав клетки, она сохраняет ее своеобразие.

Самовоспроизводство

Мембрана — одна из определяющих черт клеточной жизни. Другой такой чертой является характер происходящего в клеточном объеме метаболизма. По словам микробиолога Линн Маргулис: «Метаболизм, этот непрерывный химический процесс самосохранения, есть неотъемлемая черта живого… Посредством непрекращающегося метаболизма, посредством химических и энергетических потоков жизнь непрерывно производит, ремонтирует и продолжает самое себя. Только клетки и состоящие из них организмы метаболируют» [17].

Взглянув на метаболические процессы более пристально, мы обнаружим, что они представляют собой химические цепи или сети. Это еще одна фундаментальная особенность живого. Подобно тому как экосистемы анализируются с помощью пищевых цепей (сетей организмов), отдельные организмы рассматриваются как сети клеток, органов и систем органов, а клетки в свою очередь — как сети молекул. Одним из ключевых достижений системного подхода явилось понимание того, что сеть — это модель организации, присущая всему живому. Везде, где мы обнаруживаем жизнь, мы видим сети.

Метаболической сети клеток свойственна совершенно особая динамика, кардинально отличающая ее от внешней неживой среды. Получая продукты питания извне, клетка поддерживает себя при помощи сети происходящих внутри своей оболочки химических реакций, производя таким образом все клеточные компоненты, в том числе и саму оболочку [18].

Функция каждого из компонентов такой сети состоит в том, чтобы трансформировать или заменить собой другие компоненты, так что сеть как целое постоянно воспроизводит самое себя. Здесь — ключ к системному определению жизни: живые сети постоянно создают (или воссоздают) себя, преобразуя или заменяя свои компоненты. Тем самым, претерпевая непрерывные структурные изменения, они сохраняют сетевую модель своей организации.

Динамика самовоспроизводства была названа биологами Умберто Матураной и Франсиско Варелой ключевой характеристикой живого; они же дали ей название «автопоэзис» (буквально: «самосоздание») [19]. Концепция автопоэзиса объединяет в себе две вышеупомянутые определяющие характеристики клеточной жизни — наличие физической оболочки и метаболической сети. В отличие от поверхности кристаллов или крупных молекул, оболочка автопоэтической системы химически отлична от остальной системы и участвует в метаболических процессах, постоянно собирая себя и избирательно фильтруя входящие и исходящие молекулы [20].

Определение живой системы как автопоэтической сети означает, что феномен жизни следует понимать как свойство системы в целом. По словам Пьера Луиджи Луизи, «живой нельзя назвать никакую отдельную молекулярную компоненту (даже ДНК или РНК!), но лишь ограниченную метаболическую сеть в целом» [21].

Автопоэзис представляет собой четкий и действенный критерий различия между живыми и неживыми системами. Так, он показывает, что вирусы не являются живыми, так как не обладают собственным метаболизмом. За пределами живой клетки вирусы — инертные молекулярные структуры, состоящие из белков и нуклеиновых кислот. По существу, вирус — это химическое послание, к которому для производства новых вирусных частиц согласно инструкциям, закодированным в его ДНК или РНК, нужно еще присовокупить метаболизм живой клетки-хозяина. И строятся эти новые частицы не в пределах собственно вируса, а вне его — в клетке-хозяине [22].

Точно так же не может считаться живым робот, собирающий другие роботы из деталей, сделанных другими машинами. В последние годы не раз высказывались соображения, что компьютеры и прочие автоматы могут в будущем составить основу неких живых форм. Однако, согласно нашему определению живого, до тех пор, пока они не научатся синтезировать свои компоненты из «пищевых молекул», взятых из окружающей среды, их нельзя будет считать таковыми [23].

Клеточная сеть

Задавшись целью подробно описать метаболическую сеть клетки, мы тут же обнаружим, что даже у простейших бактерий она чрезвычайно сложна. Большинство метаболических процессов ускоряются (катализируются) ферментами и подпитываются энергией посредством особых фосфорсодержащих молекул вещества, именуемого аденозинтрифосфатом (АТФ). Ферменты образуют сложнейшую сеть каталитических реакций, а молекулы АТФ — соответствующую энергетическую сеть [24]. При помощи посыльных РНК обе эти сети связываются с геномом (клеточными молекулами ДНК), который сам по себе является изобилующей обратными связями сложной и запутанной сетью и в котором гены прямо или косвенно регулируют деятельность друг друга.

Некоторые биологи проводят различие между двумя процессами клеточного производства и, соответственно, двумя клеточными сетями. Первая из них именуется — в более узком смысле слова — метаболической сетью, где поступающая сквозь клеточную мембрану «пища» превращается в так называемые «метаболиты» — строительные блоки, из которых формируются макромолекулы (ферменты, структурные белки, РНК и ДНК).

Роль второй сети — производство макромолекул из метаболитов. Эта сеть включает в себя генетический уровень, но выходит за его рамки, за что и получила название «эпигенетической» [14] сети. Но несмотря на различные названия, две упомянутые сети тесно взаимосвязаны и вместе образуют автопоэтическую сеть клетки.

Ключевой вывод такого нового понимания жизни состоит в том, что возникновение биологических форм и функций не обусловлено простым генетическим калькированием, но представляет собой качественный скачок свойств эпигенетической сети в целом. Чтобы осмыслить этот скачок, нужно разобраться не только в генетических структурах и клеточной биохимии, но и в той сложной динамике, которая разворачивается, когда эпигенетическая сеть сталкивается с физическим и химическим давлением со стороны окружающей среды.

Согласно нелинейной динамике — новой математике сложных систем, — результатом такого столкновения может стать ограниченный набор функций и форм, математически описываемых при помощи аттракторов — сложных геометрических паттернов [15], или структур, отражающих динамические свойства системы [25]. Первые важные шаги в использовании нелинейной динамики для объяснения того, как возникают биологические формы, были сделаны биологом Брайаном Гудвином и математиком Йэном Стюартом [26]. По словам последнего, этой области науки в ближайшие годы суждено стать одной из наиболее плодотворных:

Я предсказываю, — и я далеко не одинок в своем мнении, — что одной из наиболее впечатляющих и быстро прогрессирующих областей науки XXI века станет биоматематика. Новое столетие станет свидетелем лавины новых математических концепций, новых видов математики, порожденных необходимостью осмыслить структуры живого мира [27].

Подобный взгляд весьма отличается от того генетического детерминизма, который по-прежнему широко распространен среди специалистов по молекулярной биологии, биотехнологических компаний и в популярной научной прессе [28]. Большинство людей убеждены, что та или иная биологическая форма жестко задана генетической программой и что вся информация о клеточных процессах передается следующему поколению посредством ДНК при делении клетки и репликации ДНК. Но в действительности все происходит совсем по-другому.

Самовоспроизводясь, клетка передает наследнице не только свои гены, но и свои мембраны, гормоны, органеллы — иными словами, всю клеточную сеть. Новая клетка производится не из голой ДНК, но из неразрывного продолжения всей автопоэтической сети. ДНК никогда не передается сама по себе, поскольку гены могут функционировать только будучи внедрены в эпигенетическую сеть. Так жизнь уже более трех миллиардов лет развертывается в непрерывном процессе, никогда не нарушая основополагающую организационную модель своих самовоспроизводящихся сетей.

Возникновение нового порядка

В теории автопоэзиса определяется паттерн самовоспроизводящихся сетей как главная характеристика живого, но при этом не дается подробного описания происходящих в таких сетях физических и химических процессов. А как мы уже видели, такое описание является важнейшим условием понимания того, как возникают биологические формы и функции.

Отправной точкой здесь служит то обстоятельство, что все клеточные структуры в своем существовании далеки от термодинамического равновесия и очень быстро придут к таковому, — что, попросту говоря, будет означать смерть клетки — если только метаболизм клетки с помощью непрерывного потока энергии не будет восстанавливать ее структуры по мере их распада. Это означает, что клетка должна быть описана как открытая система. Живые системы (будучи автопоэтическими сетями) организационно замкнуты, но материально и энергетически они открыты. Чтобы жить, они должны питаться непрерывными потоками материи и энергии из окружающей среды. С другой стороны, клетки, как и все живые организмы, непрерывно производят шлаки, и этот круговорот материи — пищи и шлаков — устанавливает их место в пищевой сети. По словам Линн Маргулис: «Клетка автоматически устанавливает связи со своим окружением. Она испускает из себя нечто, а кто-то другой это поедает» [29].

Тщательные исследования материальных и энергетических потоков сквозь сложные системы привели к созданию теории диссипативных структур, построенной Ильей Пригожиным с сотрудниками [30]. Диссипативная структура, по определению Пригожина, — это открытая система, поддерживающая себя в существенно неравновесном состоянии, но тем не менее являющаяся устойчивой: несмотря на исходящий поток и смену составляющих, в ней сохраняется одна и та же общая модель организации. Термин «диссипативные структуры» по замыслу Пригожина призван подчеркнуть описанное выше тесное взаимодействие между структурой с одной стороны и потоком и изменениями (или диссипацией) с другой.

Специфической чертой динамики таких диссипативных структур является то, что она приводит к спонтанному возникновению новых форм порядка. При возрастании потока энергии система может прийти в точку неустойчивости, называемую «точкой бифуркации», за которой ее эволюция может пойти по совершенно иному пути, допускающему возникновение новых структур и упорядоченных форм.

Такое самопроизвольное установление порядка в критических точках неустойчивости представляет собой одну из наиболее важных концепций нового понимания жизни. Условно его называют самоорганизацией. Считается, что именно она является динамическим источником развития, обучения и эволюции. Иными словами, созидательная способность, свойство порождать новые формы — это основополагающее свойство всех живых систем. А поскольку самоорганизация есть неотъемлемая составляющая динамики открытых систем, мы приходим к важному выводу, что открытым системам свойственно развиваться и эволюционировать. Жизнь всегда стремится к новому.

Сформулированная в терминах нелинейной динамики теория диссипативных структур не только объясняет самопроизвольное возникновение порядка, но и помогает нам определить само понятие сложности [31]. В то время как традиционно изучение сложности сводилось к исследованию сложных структур, теперь внимание ученых смещается от собственно структур к процессам их образования. Так, вместо того, чтобы подобно биологам определять сложность организма через перечисление типов составляющих его клеток, можно определить ее как количество бифуркаций, через которые зародыш проходит за время своего развития. Соответственно, Брайан Гудвин говорит о «морфологической сложности» [32].

Пребиотическая эволюция

Давайте ненадолго прервемся и сделаем краткий обзор определяющих характеристик живых систем, выявленных нами в процессе обсуждения клеточной жизни. Итак, мы выяснили, что клетка — это ограниченная мембраной, самовоспроизводящаяся, организационно замкнутая метаболическая сеть; что она материально и энергетически открыта и использует непрерывный поток материи и энергии для производства, ремонта и сохранения самой себя; наконец, что ее жизнедеятельность существенно неравновесна и именно это делает возможным возникновение новых форм порядка, а значит — развитие и эволюцию. Названные характеристики описываются двумя различными теориями, представляющими два различных взгляда на живое, — теорией автопоэзиса и теорией диссипативных структур.

Попытавшись объединить эти две теории, мы сразу обнаружим некоторую нестыковку. В то время как все автопоэтические системы являются диссипативными, отнюдь не все диссипативные системы автопоэтичны. Илья Пригожий, движимый лишь общим интересом к природе живого, вывел свою теорию из изучения сложных тепловых систем и существенно неравновесных химических циклов [33].

Итак, диссипативные структуры не обязательно представляют собой живые системы, но коль скоро неотъемлемой частью их динамики является самоорганизация, все они обладают эволюционным потенциалом. Иными словами, можно говорить о «пребиотической эволюции» — эволюции неживой материи, по всей видимости начавшейся за некоторое время до возникновения живых клеток. Подобных взглядов придерживаются сегодня очень многие ученые.

Первое обстоятельное изложение идеи, согласно которой живая материя происходит из неживой путем непрерывного эволюционного процесса, было предложено ученому миру русским биохимиком Александром Опариным в его классическом труде «Происхождение жизни», увидевшем свет в 1929 году [34]. Опарин назвал такой процесс «молекулярной эволюцией»; сегодня же о нем обычно говорят как о «пребиотической эволюции». Как пишет Пьер Луиджи Луизи: «Из небольших молекул образовывались соединения, отличавшиеся все большей молекулярной сложностью и качественно новыми свойствами, пока наконец не появилось наиболее экстраординарное из спонтанно возникающих свойств — сама жизнь» [35].

Несмотря на то, что идея пребиотической эволюции получила сегодня широкое признание, среди ученых нет единого мнения относительно деталей этого процесса. Было предложено несколько возможных сценариев, но ни один из них не удалось продемонстрировать на опыте. Отправной точкой одной из таких схем служат образованные ферментами каталитические циклы и «гиперциклы» (циклы со множеством обратных связей), способные к самовоспроизведению и эволюции [36]. Другой сценарий основывается на недавнем открытии, согласно которому некоторые виды РНК также могут играть роль ферментов, т. е. выступать катализаторами метаболических процессов. Такая твердо установленная каталитическая способность РНК позволяет представить себе некую эволюционную стадию, на которой две важнейшие функции живой клетки — перенос информации и каталитическая деятельность — выполняли молекулы одного типа. Специалисты назвали эту гипотетическую стадию «РНК-миром» [37].

Согласно эволюционному сценарию РНК- мира, сперва молекулы РНК выполняли каталитическую функцию, необходимую для того, чтобы скопировать самих себя, после чего начали синтезировать белки, в том числе ферменты. Последние оказались значительно более эффективными катализаторами и в конце концов стали играть в этом отношении главенствующую роль. Наконец, в игру вступили молекулы ДНК — главные переносчики информации, которые благодаря своему двухнитевому строению обладают к тому же способностью корректировать погрешности при ее копировании. На этой стадии РНК взяла на себя посредническую функцию, которую выполняет по сей день, уступив роль хранителя информации более эффективной в этом плане ДНК, а катализирующую роль — белкам-ферментам.

Элементарная жизнь

Все эти сценарии носят пока что весьма умозрительный характер — идет ли при этом речь о каталитических гиперциклах белков-ферментов, которые окружили себя мембранами, а затем неким образом создали структуру ДНК, об РНК-мире, развившемся в нынешние ДНК, РНК и белки, или же, в недавнем переосмыслении, об объединении этих двух сценариев [39]. Но как бы ни происходила пребиотическая эволюция, возникает интересный вопрос: можно ли говорить о живых системах на некоей стадии, предшествующей возникновению клеток? Иными словами, можно ли как-нибудь определить элементарные характеристики гипотетических живых систем прошлого независимо от того, во что они превратились впоследствии? Вот как на этот вопрос отвечает Луизи:

Ясно, что процесс, приведший к существованию жизни, непрерывен, и это чрезвычайно затрудняет точное ее определение. По существу, на пути, намеченном Опариным, есть множество мест, где можно было бы произвольно установить знак «элементарная жизнь». Это и стадия саморепликации, и стадия, где саморепликация… стала сопровождаться химической эволюцией, и тот момент времени, когда белки и нуклеиновые кислоты стали взаимодействовать друг с другом, и стадия формирования генетического кода, и время возникновения первой клетки [40].

Луизи приходит к выводу, что степень содержательности различных определений элементарной жизни (пусть даже в равной мере обоснованных) зависит от тех целей, для которых их используют.

Если основная идея пребиотической эволюции верна, значит, ее в принципе возможно продемонстрировать в лаборатории. Задача ученых, работающих в этой области, — получить жизнь из отдельных молекул или по меньшей мере воспроизвести различные эволюционные стадии того или иного пребиотического сценария. Будь в распоряжении химиков окаменелости, повествующие о развитии пребиотических систем со времени образования на Земле первых горных пород до момента возникновения первой клетки, это дало бы им ценные сведения о промежуточных структурах. Но таких свидетельств нет, и задача ученых может показаться невыполнимой.

Тем не менее, в последнее время в этом отношении достигнуты существенные успехи; к тому же не следует забывать, что данная область исследований еще весьма молода. Систематических исследований происхождения жизни не проводилось около полувека, но даже несмотря на то, что наши представления о пребиотической эволюции по-прежнему весьма умозрительны, большинство биологов не сомневаются: жизнь на Земле возникла в результате цепочки химических событий, подчиняющихся законам физики, химии и динамики сложных систем.

Эта идея убедительно и весьма аргументировано отстаивается Гарольдом Моровицем в его великолепной брошюре «Начала клеточной жизни» [41], положениям которой я намереваюсь посвятить остаток этой главы. Моровиц подходит к вопросу о пребиотической эволюции и происхождении жизни с двух сторон. Прежде всего, он определяет те основные молекулярно-биологические и биохимические принципы, которые являются общими для всех живых клеток. Он проводит эволюционную ретроспективу этих принципов вплоть до момента возникновения бактериальной клетки и доказывает, что они должны были играть ключевую роль в формировании «протоклеток», из которых развились первые клетки: «В силу исторической непрерывности, пребиотические процессы должны были наложить отпечаток на современную биохимию» [42].

Определив основные физические и химические принципы, управлявшие формированием протоклеток, Моровиц задается вопросом: как могла материя, подчиненная этим принципам и подверженная воздействию имевшихся в те времена на земной поверхности энергетических потоков, самоорганизоваться таким образом, чтобы произвести на свет различные виды протоклеток и, наконец, первую живую клетку?

Составляющие живого

Основные химические составляющие жизни — это ее атомы, молекулы и химические процессы, или «метаболические пути». Подробно обсуждая эти составляющие, Моровиц изящно показывает, что жизнь уходит корнями глубоко в основы физики и химии.

Можно начать с того наблюдения, что для формирования сложных биохимических структур необходимы кратные химические связи и что из всех имеющихся атомов регулярно образуют такие связи только углерод (С), азот (N) и кислород (О). Известно также, что наиболее прочные связи образуют легкие атомы. Поэтому неудивительно, что вышеупомянутые три элемента наряду с легчайшим из элементов, водородом (Н), являются основными в биологических структурах.

Мы также знаем, что жизнь началась в воде и что клеточная жизнь по-прежнему протекает в водной среде. Моровиц отмечает, что молекулы воды (Н2О) существенно электрически поляризованы, потому что электроны в них располагаются ближе к атому кислорода, чем водорода, так что эффективный заряд последнего оказывается положительным, а кислорода — отрицательным. Эта полярность является важнейшей чертой молекулярных биохимических процессов биохимии, в частности, как мы увидим ниже, формирования мембран.

Наконец, к числу основных атомов биологических структур относятся фосфор (Р) и сера (S). Уникальность их химических свойств в том, что они легко образуют различные соединения, и биохимики считают, что именно эти элементы были основными в пребиотической химии. В частности, некоторые фосфаты принимают участие в преобразовании и переносе химической энергии, что было столь же важно во времена пребиотической эволюции, как и сегодня, в процессах клеточного метаболизма.

Перейдя от атомов к молекулам, упомянем о существовании универсального набора небольших органических молекул, используемого всеми клетками в качестве пищи для своего метаболизма. И хотя животные потребляют разнообразнейшие молекулы вплоть до сложнейших, прежде, чем эти последние оказываются вовлечены в клеточные метаболические процессы, они разлагаются на более мелкие составляющие. Собственно говоря, общее число различных пищевых молекул не превышает нескольких сотен — факт, весьма примечательный в свете того, как много различных простых соединений можно образовать из атомов С, Н, N,O, P и S.

Универсальность и невысокое разнообразие атомов и молекул в современных живых клетках является мощным аргументом в пользу их общего эволюционного происхождения от первых протоклеток. Дополнительное подтверждение эта гипотеза получит, если мы обратимся к метаболическим путям, представляющим собой основу химии живого. Тот же феномен мы обнаружим и здесь. Как пишет Моровиц: «По сравнению с огромным разнообразием биологических видов, которых нам известны миллионы, разнообразие биохимических путей ограниченно, а их характер распространен повсеместно» [43]. Весьма вероятно, что ядро этой метаболической сети представляет собой первичную биохимию, содержащую важные свидетельства о происхождении жизни.

Пузырьки элементарной жизни

Итак, внимательное рассмотрение и анализ основных элементов жизни четко указывает на то, что корни клеточной жизни следует искать в универсализме физики и биохимии, существовавшем задолго до начала эволюции живых клеток. Обратимся теперь ко второй из предложенных Гарольдом Моровицем линии исследования. Как в условиях ограничений этой первичной физики и биохимии, без дополнительных ингредиентов, материя смогла самоорганизоваться так, чтобы образовать сложные молекулы, из которых развилась жизнь?

Идея о том, что небольшие молекулы в первичном «химическом бульоне» самопроизвольно собирались во все более сложные структуры, противоречит всему нашему опыту изучения простых химических систем. По этой причине многие ученые доказывали, что шансы такой пребиотической эволюции исчезающе малы, если только не имел места какой-либо изначальный толчок — например, занесение на Землю макромолекул метеоритами.

Сегодня наша отправная точка для разрешения этой загадки совершенно иная. Специалисты пришли к выводу, что изъян обычной аргументации состоит в убеждении, будто жизнь непременно должна была возникнуть из первичного химического бульона путем последовательного увеличения молекулярной сложности. Новое же мышление, как неоднократно подчеркивает Моровиц, начинается с гипотезы, что очень давно, еще до увеличения молекулярной сложности, определенные молекулы собрались в примитивные мембраны, спонтанно образовавшие замкнутые пузырьки, и что эволюция молекулярной сложности происходила внутри них, а не в хаотичном химическом бульоне.

Прежде чем приступить к подробному разговору о том, как могли спонтанно образоваться эти примитивные мембранные пузырьки, мне бы хотелось рассказать о том, насколько далеко идущими были последствия этого процесса. Образование пузырьков привело к формированию двух различных сред — внутренней и внешней, в которых смогли накапливаться структурные изменения.

Как показывает Моровиц, внутренний объем таких пузырьков представлял собой замкнутую микросреду, в которой могли происходить направленные химические реакции, а значит, в больших количествах накапливаться молекулы, редкие в обычных условиях. В число таких молекул, в частности, входили те, что могли послужить строительным материалом для самой мембраны — встраиваясь в нее, они тем самым расширяли ограниченное ею пространство. На каком-то этапе такого роста стабилизирующие силы оказывались уже не в состоянии поддерживать целостность мембраны и пузырек лопался, образуя два или более новых пузырька [44].

Подобные процессы роста и самовоспроизводства возможны только в том случае, если мембрану пронизывает поток материи и энергии. Моровиц предлагает довольно разумное описание того, как это могло происходить [45]. Мембраны пузырьков были полупроницаемыми, что позволяло различным мелким молекулам проникать внутрь или встраиваться в мембрану. Среди них могли оказаться хромофоры — молекулы, поглощающие солнечный свет. Их присутствие создавало разность электрических потенциалов вдоль мембраны, и пузырек таким образом превращался в устройство, преобразующее солнечную энергию в электрическую. В свою очередь, возможность такого преобразования позволяла непрерывному потоку энергии управлять химическими процессами внутри пузырька. Этот энергетический сценарий приобрел еще большую утонченность, когда химические реакции внутри пузырька привели к образованию фосфатов, являющихся весьма эффективными преобразователями и переносчиками химической энергии.

Моровиц также указывает, что поток материи и энергии необходим не только для роста и воспроизводства пузырьков, но и вообще для сколько-нибудь длительного существования устойчивых структур. Все такие образования возникают в результате случайных событий химического характера и подвержены тепловой смерти, а значит, они по самой своей природе неравновесны и могут сохраняться лишь благодаря постоянной переработке материи и энергии [46]. Теперь для нас должно быть очевидно, что в этих примитивных ограниченных мембранами пузырьках в рудиментарной форме уже проявились две определяющие характеристики клеточной жизни. Пузырьки были открытыми системами, пронизываемые непрерывным потоком материи и энергии, в то время как их внутренность представляла собой относительно замкнутое пространство, в котором вполне могли установиться сети химических реакций. Можно утверждать, что эти два свойства составляют основу живых сетей и их диссипативных структур.

На этом этапе все было готово для начала пребиотической эволюции. В большой совокупности пузырьков должно было проявляться множество различий в химических свойствах и структурных компонентах. И если эти различия сохранялись при делении пузырьков, то можно говорить о прегенетической памяти и о различных видах пузырьков. Далее, необходимость соперничать друг с другом за энергию и различные молекулы из окружающей среды порождала среди пузырьков своего рода дарвиновскую борьбу за существование и естественный отбор, благодаря которым определенные случайные события молекулярного характера могли получать преимущество соответственно их эволюционной ценности и становиться более частыми. Кроме того, слияние различных видов пузырьков могло приводить к совместному проявлению полезных химических свойств, предвосхищая явление симбиогенеза (возникновения новых форм жизни в результате симбиоза организмов) в биологической эволюции [47].

Таким образом, мы видим, что на этих ранних стадиях многообразие чисто физических и химических механизмов было способно наделить мембранные пузырьки способностью даже в отсутствие ферментов и генов развиться путем естественного отбора в сложные самовоспроизводящиеся структуры [48].

Мембраны

Но вернемся к образованию мембран и окруженных ими замкнутых пузырьков. По Моровицу, формирование последних представляло собой ключевую стадию пребиотической эволюции: «Именно замыкание [примитивных] мембран в «пузырьки» явилось качественным переходом от неживого к живому» [49].

Химический механизм этого важнейшего процесса на удивление прост и широко распространен. В основе его лежит упомянутая выше электрическая полярность молекул воды. Благодаря ей молекулы одних веществ являются гидрофильными (притягивают молекулы воды), а других — гидрофобными (отталкивают их). К третьему же роду относятся молекулы маслянистых веществ, называемых липидами. Это вытянутые образования, один конец которых гидрофильный, а другой гидрофобный — как показано на рисунке.

гидрофобный конец гидрофильный конец

Липидная молекула. Воспроизводится по Morowitz (1992)

Контактируя с водой, липиды спонтанно образуют самые разные структуры. Так, они могут образовать мономолекулярную пленку на водной поверхности (рис. А) или окружить жировую капельку, так что она останется висеть в объеме воды (рис. Б). Подобное явление имеет место в майонезе; благодаря этому же явлению мыло удаляет жирные пятна. Может случиться и наоборот — липиды окружат водяные капельки, образовав их суспензию в жире (рис. В).



Б

жировые капельки в водеводяные капельки в жире

Простые структуры, образуемые молекулами липидов. Воспроизводится по Morowitz (1992)

Кроме того, липиды способны образовывать и более сложные структуры, состоящие из двойного слоя молекул, с обеих сторон окруженного водой, — рис. Г. Это основополагающая структура мембраны, которая, как и одиночный молекулярный слой, может образовывать капельки — представляющие собой не что иное, как обсуждавшиеся выше пузырьки, окруженные мембраной (рис. Д). Такие двухслойные жировые мембраны обладают поразительным набором свойств, во многом подобных свойствам нынешних клеточных мембран. Они ограничивают число молекул, способных проникнуть внутрь пузырька, преобразуют солнечную энергию в электрическую и даже накапливают внутри своей структуры фосфатные молекулы. Безусловно, нынешние клеточные мембраны могут рассматриваться как усовершенствованный вариант таких первичных оболочек. Они также состоят преимущественно из липидов и прикрепляют к себе белки, либо же встраивают их в себя.



пузырек, окруженный мембраной

Мембрана и пузырек, образованные липидными молекулами. Воспроизводится noMorowitz (1992)

Итак, липидные пузырьки — идеальные кандидаты на роль протоклеток, из которых развились первые живые клетки. Как замечает Моровиц, их свойства столь удивительны, что иногда забываешь, что это структуры, возникшие самопроизвольно, в соответствии с фундаментальными законами физики и химии [50]. Они образовались столь же естественным путем, как и те пузырьки, которые появляются, когда вы хорошенько встряхиваете обычную смесь воды и масла.

В предложенном Моровицем сценарии первые протоклетки возникли около 3,9 миллиардов лет назад, когда планета остыла, океаны стали мельче, сформировались первые горные породы и благодаря соединению углерода с другими «жизненными» элементами на Земле возникло необходимое многообразие химических соединений.

Одними из таких соединений были маслянистые вещества, называемые парафинами, молекулы которых представляют собой длинные углеводородные цепи. Взаимодействие парафинов с водой и растворенными в ней различными минералами приводит к образованию липидов. Последние собирались в капельки, а также образовывали тонкие одно- и двухслойные пленки. Под воздействием волн эти пленки спонтанно замыкались в пузырьки, закладывая тем самым основу для развития жизни.

Воспроизводство протоклеток в лаборатории

Изложенный выше сценарий по-прежнему остается весьма умозрительным, поскольку химикам до сих пор не удалось получить липиды из простых молекул. В окружающей нас среде липиды образуются из нефти и других органических веществ. И все же подход, ставящий во главу угла мембраны и пузырьки, а не ДНК и РНК, положил начало новому многообещающему направлению исследований, которое уже принесло целый ряд обнадеживающих результатов.

ССССССССА→СС→РАР

С

С

С

С

С

С

С

С

А→С

С→Р

А

Р

Две базовые реакции в элементарной автопоэтической системе. Luisi (1993)

Одними из первопроходцев в этой области являются ученые из Швейцарского федерального технологического института (ЕТН) в Цюрихе, работающие под руководством Пьера Луиджи Луизи. Им удалось получить простые «мыльно-водные» среды, в которых спонтанно образуются аналогичные пузырьки и, в зависимости от проходящих в этих средах химических реакций, они самоподдерживаются, растут, самовоспроизводятся или же коллапсируют и гибнут [51].

Луизи подчеркивает, что созданные в его лаборатории самовоспроизводящиеся пузырьки представляют собой элементарные автопоэтические системы, в которых объем, где проходят химические реакции, ограничен оболочкой, построенной из продуктов самих этих реакций. В простейшем случае, который изображен на рисунке, оболочка состоит только из одного компонента — С. Имеется лишь один тип молекул, А, способных проходить сквозь мембрану и посредством реакции А — С образовывать внутри пузырька вещество С. Кроме того, имеет место реакция разложения С — Р, и возникшее в результате вещество Р покидает пузырек. В зависимости от соотношения скоростей этих двух базовых реакций пузырек будет либо расти и самовоспроизводиться, либо сохранять устойчивость, либо гибнуть.

Луизи и его коллеги экспериментировали с различными типами пузырьков и испробовали множество химических реакций внутри них [52]. Получив спонтанно образующиеся автопоэтические протоклетки, биохимики воспроизвели, пожалуй, наиболее важную стадию пребиотической эволюции.

Катализаторы и сложность

Образование протоклеток и молекул, способных поглощать и преобразовывать солнечную энергию, открыло путь для направленного усложнения структур. На этой стадии составляющие их химические соединения включали в себя углерод, водород, кислород и, вероятно, серу. Вступление же в игру азота (скорее всего, в виде аммония — NH3) сделало возможным резкое возрастание сложности молекул, поскольку азот необходим для реализации двух отличительных черт клеточной жизни — катализа и хранения информации [53].

Катализаторы ускоряют ход химических реакций, сами не претерпевая при этом изменений. Они также делают возможными реакции, которые без них не могли бы идти. Каталитические реакции — это важнейшие процессы химии живого. В современных клетках они управляются ферментами, но на ранних стадиях этих сложных молекул еще не существовало.

Тем не менее, химики обнаружили, что каталитические свойства могут проявлять, прикрепляясь к мембране, и некоторые простые молекулы. Моровиц полагает, что приход азота в химию протоклеток привел к образованию как раз таких примитивных катализаторов. И ученые из Швейцарского технологического института успешно воспроизвели эту эволюционную стадию, прикрепив молекулы со слабыми каталитическими свойствами к стенкам полученных в лаборатории пузырьков [54].

Появление катализаторов привело к быстрому росту молекулярной сложности, поскольку они служат связующим звеном между различными реакциями, образуя тем самым химические сети. Теперь уже в игру вступили все законы нелинейной динамики сетей. Как показали Илья Пригожий и Манфред Эйген — два нобелевских лауреата по химии и первопроходцы в изучении самоорганизующихся химических систем, — это, в числе прочего, открывает путь к спонтанному образованию новых упорядоченных форм [55].

Каталитические реакции значительно увеличили число полезных случайных событий, что привело к развертыванию полномасштабной дарвиновской конкуренции за выживание, постоянно подталкивавшей протоклетки к росту сложности, удалению от равновесия и в конце концов — к жизни.

Последней стадией возникновения жизни из протоклеток явилась эволюция белков, нуклеиновых кислот и генетического кода. Подробности прохождения этой стадии пока что весьма туманны, но не следует забывать, что эволюция каталитических сетей в замкнутом пространстве протоклеток породила новый тип сетевых химических процессов, которые до сих пор далеко не поняты. Можно рассчитывать, что применение к этим сложным химическим сетям законов нелинейной динамики и предсказанная Иэном Стюартом «лавина новых математических концепций» в значительной мере прольют свет на последнюю стадию пребиотической эволюции. Гарольд Моровиц указывает, что в результате анализа химических путей, ведущих от простых молекул к аминокислотам, обнаружились поразительные соответствия, вскрывающие в формировании генетического кода «глубокую сетевую логику» [56].

Другое интересное открытие состоит в том, что находящиеся в замкнутом пространстве химические сети, пронизываемые постоянными энергетическими потоками, порождают процессы, удивительно похожие на те, что происходят в экосистемах. Например, в лабораторных системах удалось продемонстрировать развитие ключевых черт биологического фотосинтеза и экологического углеродного цикла. Круговорот материи оказывается общей чертой химических сетей, поддерживаемых постоянным энергетическим потоком в существенно неравновесном состоянии [57].

«Общая идея, — заключает Моровиц, — состоит в необходимости осмысления сложных сетей органических реакций, промежуточные продукты которых служат катализаторами других реакций… Если мы лучше поймем, как изучать химические сети, множество других проблем пребиотической химии значительно упростятся» [58]. Рост интереса биохимиков к нелинейной динамике будет весьма способствовать тому, что предвиденная Стюартом новая «биоматематика» включит в себя адекватную теорию химических сетей и в конце концов поможет раскрыть секреты последней стадии возникновения жизни.

Становление жизни

Когда в макромолекулах оказалась закодирована память, ограниченные мембранами химические сети приобрели все отличительные черты современных бактериальных клеток. Эта крупнейшая веха в эволюции жизни приходится на время, отстоящее от нас приблизительно на 3,8 миллиарда лет, — спустя 100 миллионов лет после образования первых протоклеток. Это событие ознаменовало появление всеобщего предка — отдельной клетки, либо же клеточной популяции, — от которого последовательно произошла вся земная жизнь. Как разъясняет Моровиц: «Хотя мы не знаем, сколько было независимых случаев возникновения клеточной жизни, вся нынешняя жизнь происходит от единого клона. Это следует из универсальности базовых биохимических сетей и программ макромолекулярного синтеза» [59]. Общий предок был совершеннее любой из протоклеток, а потому его потомки заполонили Землю, построили планетарную бактериальную сеть и заняли все экологические ниши, так что зарождение других форм жизни стало невозможным.

Глобальное становление жизни шло по трем главным эволюционным направлениям [60]. Первое и, пожалуй, наименее важное — это случайные мутации генов, главная опора неодарвинистской теории. Генные мутации возникают вследствие случайных ошибок в саморепликации ДНК, когда нити ее двойной спирали разделяются и каждая из них служит шаблоном для построения новой комплементарной цепи. Такие ошибки, однако, вряд ли случаются достаточно часто, чтобы объяснить ими эволюционное возникновение огромного разнообразия живых форм — особенно с учетом того общеизвестного факта, чтобольшинство мутаций пагубны для организма и лишь весьма малая их часть приводит к полезным изменениям [61]. В случае бактерий ситуация здесь несколько иная, поскольку они делятся так быстро, что в течение дня одна клетка способна породить миллиарды себе подобных. Из-за столь огромной скорости воспроизводства одна удачная мутация может распространиться довольно быстро. Поэтому в отношении бактерий пренебрегать этим направлением эволюции нельзя.

Однако бактерии следовали и другому, гораздо более эффективному, эволюционному направлению, чем случайные мутации. Они обладают свойством чрезвычайно легко передавать друг другу наследственные признаки по глобальной обменной сети. Обнаружение такого широкомасштабного обмена генами, получившего название рекомбинации ДНК, следует считать одним из наиболее поразительных открытий современной биологии. Вот как образно описывает это явление Линн Маргулис: «Горизонтальная генная передача у бактерий — это как если бы вы прыгнули в бассейн с карими глазами, а вынырнули с голубыми» [62].

Такая генная передача происходит непрерывно, в ней участвует множество бактерий, ежедневно обменивающихся до 15 % генного материала. Как объясняет Маргулис: «Если бактерии что-нибудь угрожает, она выбрасывает свою ДНК в окружающую среду, соседи подбирают ее, и за несколько месяцев она обходит весь земной шар» [63]. Поскольку все штаммы бактерий в принципе способны таким образом обмениваться наследственными признаками, некоторые микробиологи доказывают, что бактерии, строго говоря, нельзя подразделять на виды [64]. Иными словами, все бактерии оказываются частью единой микроскопической живой сети.

Таким образом, бактерии способны в процессе своей эволюции быстро накапливать случайные мутации, а также встраивать в себя при помощи генного обмена крупные участки ДНК. Соответственно, они обладают впечатляющей способностью приспосабливаться к окружающим условиям. Ярким свидетельством эффективности их коммуникационной сети может послужить быстрота, с которой в бактериальных сообществах распространяется устойчивость к лекарственным препаратам. Микробиология преподает нам отрезвляющий урок: такие технологии, как генная инженерия и глобальные сети связи, которые нередко почитаются выдающимися достижениями современной человеческой цивилизации, применяются планетарным сообществом бактерий уже миллиарды лет.

В течение первых двух миллиардов лет биологической эволюции бактерии и другие микроорганизмы оставались единственными живыми формами на планете. За этот период бактерии постепенно преобразили земную поверхность и атмосферу, и установили глобальные обратные связи для саморегуляции системы Геи. В процессе этой деятельности они изобрели все важнейшие биотехнологии живого, включая брожение, фотосинтез, азотфиксацию, дыхание и различные приспособления для быстрого передвижения. Последние микробиологические исследования со всей очевидностью показали, что в отношении процессов жизнедеятельности планетарная система бактерий служила основным источником эволюционной креативности.

А что же эволюция биологических форм, того удивительного разнообразия живых существ, которое мы наблюдаем в сегодняшнем мире? Если случайные мутации не являются эффективным в этом отношении механизмом, если высшие формы жизни не обмениваются генами как бактерии, то как же возникли они? Линн Маргулис ответила на этот вопрос, обнаружив третье направление эволюции — развитие путем симбиоза, — имевшее далеко идущие последствия для всех отраслей биологии.

Симбиоз, склонность различных организмов жить в тесном сотрудничестве друг с другом, а порой и внутри друг друга (как, например, бактерии в нашем кишечнике) — явление широко распространенное и хорошо известное. Но Маргулис пошла дальше, выдвинув гипотезу, что длительный симбиоз крупных клеток с обитающими в них бактериями и другими микроорганизмами приводил и продолжает приводить к образованию новых форм жизни. Впервые Маргулис опубликовала свою революционную гипотезу в середине шестидесятых и за прошедшие годы развила ее в полноценную теорию, получившую название теории симбиогенеза. Непрерывные симбиотические приспособления рассматриваются в ней как основное направление эволюции всех высших организмов и возникновения новых их форм [65].

Главенствующую роль в такой симбиотической эволюции играли опять-таки бактерии. Результатом того, что определенные бактериисимбиотически слились с более крупными клетками и стали обитать в них в качестве органелл, стал гигантский эволюционный шаг — образование растительных и животных клеток, размножающихся половым путем и в конце концов развившихся в те живые организмы, которые мы сегодня наблюдаем вокруг себя. В процессе своей эволюции эти организмы продолжали поглощать бактерии, встраивая их геном в свой, благодаря чему синтезировались новые белки, которые выполняли новые функции и служили материалом для новых структур. Это чем-то напоминает слияние и поглощение корпораций в нынешнем деловом мире. В частности, ученые получают все больше свидетельств в пользу того, что микроканальцы (microtubules), являющиеся неотъемлемой частью структуры мозга, были изначально привнесены бактериями-спирохетами [66].

Эволюционное становление жизни в течение миллиардов лет — это захватывающая история, блестяще рассказанная Линн Маргулис и Дорионом Саганом в книге «Микрокосм» [67]. Движимая созидательной способностью, присущей всем живым системам, проявляющаяся посредством мутаций, генного обмена и симбиоза, усовершенствованная естественным отбором, планетарная сеть жизни расширялась и усложнялась, приобретая все большее разнообразие.

Это величественное развертывание жизни не представляло собой непрерывную цепь постепенных изменений. Геологические свидетельства ясно показывают, что длительные периоды стабильности эволюционной истории, или стасиса, время от времени прерывались внезапными качественными скачками [68]. Такая картина «перемежающейся стабильности» указывает, что упомянутые внезапные переходы вызывались совершенно иными механизмами, нежели случайные мутации неодарвинистской теории; возникновение новых видов путем симбиоза, по-видимому, играло здесь ключевую роль. Как пишет Маргулис: «В масштабах огромных геологических периодов симбиозы были как вспышки эволюционной молнии» [69].

Еще одной примечательной особенностью было периодическое наступление катастрофических событий с последующими длительными периодами роста и обновления. Так, 245 миллионов лет назад произошло наиболее массовое вымирание населявших планету существ, за которым быстро последовало развитие млекопитающих. А 66 миллионовлет назад катастрофа, стершая с лица земли динозавров, открыла путь для эволюции приматов и, в конечном итоге, человека.

Что такое жизнь?

Давайте вернемся теперь к поставленному в начале этой главы вопросу об определяющих характеристиках живых систем и подытожим то, что нам удалось выяснить. Рассмотрев простейшие из таких систем — бактерии, — мы охарактеризовали живую клетку как ограниченную мембраной, самовоспроизводящуюся, организационно замкнутую метаболическую сеть. Эта сеть включает в себя несколько типов чрезвычайно сложных макромолекул: структурные белки, ферменты, которые катализируют метаболические процессы, переносчики генетической информации РНК и, наконец, ДНК, которые хранят эту информацию и отвечают за самовоспроизводство клетки.

Мы также выяснили, что клеточная сеть материально и энергетически открыта и использует непрерывный поток материи и энергии для своего построения, ремонта и поддержания жизнеспособности. Сеть эта существенно неравновесна, что обусловливает спонтанное возникновение новых структур и форм, а значит — становление и эволюцию.

Наконец, мы увидели, что пребиотическая форма эволюции с участием окруженных мембранами пузырьков «элементарной жизни» началась задолго до возникновения первой живой клетки и что своими корнями жизнь уходит глубоко в фундаментальную физику и химию таких протоклеток.

Также мы определили три основных направления эволюционного становления — мутации, генный обмен и симбиоз. Следуя именно этим направлениям, в течение более трех миллиардов лет жизнь развертывалась от общих бактериальных предков до человека, ни разу не нарушив базовой организационной модели своих самовоспроизводящихся сетей.

Чтобы распространить такое понимание природы жизни на сферу человеческого общества (что и является основной задачей настоящей книги), нам придется рассмотреть такие вещи, как понятийное мышление, ценности, смысл и цель — феномены, относящиеся к области человеческого сознания и культуры. Это значит, что наше понимание живых систем должно охватить также разум и сознание.

Обратившись к когнитивному аспекту жизни, мы увидим, что в наше время формируется единый взгляд на жизнь, разум и сознание, в котором человеческое сознание оказывается неразрывно связано с социальным миром межличностных отношений и культуры. Более того, мы обнаружим, что этот единый взгляд допускает осмысление духовного аспекта жизни, ничуть не противоречащее традиционным концепциям духовности.