"Паутина жизни. Новое научное понимание живых систем" - читать интересную книгу автора (Фритьоф Капра)ЧАСТЬ II Расцвет системного мышленияГлава 2 От частей к целомуНа протяжении этого столетия переход от механистической к экологической парадигме осуществлялся в различных формах и с разной скоростью во многих областях науки. Переход этот не был простым. Здесь случались и научные революции, и откаты назад, и метаморфозы, подобные качанию маятника. Хаотический маятник, в смысле теории хаоса (на первый взгляд, случайные колебания, которые никогда не повторяются точно и вместе с тем подчиняются сложному, высокоорганизованному паттерну), — вот что, вероятно, могло бы стать наиболее подходящей метафорой нашего времени. Основной конфликт приходится на взаимоотношение частей и целого. Акцент на части получил название механистического, редукционистского или атомистического подхода, акцент на целое характерен для холистического, организменного или экологического взгляда. В науке XX века холистический подход стал более известен как Основные особенности системного мышления сформировались одновременно в нескольких дисциплинах в первой половине этого столетия, в особенности в 20-е годы. Первопроходцами системного мышления стали биологи, которые придерживались взгляда на живой организм как на интегрированное целое. Далее оно обогатилось гештальт-психологией и новой наукой экологией, но наиболее драматические эффекты вызвало в квантовой физике. Поскольку центральная идея новой парадигмы касается природы жизни, мы в первую очередь обратимся к биологии. Вещество и форма Конфликт между механицизмом и холизмом несмолкающей темой проходит через всю историю биологии. Это неизбежное следствие древней дихотомии между веществом (материей, структурой, количеством) и формой (моделью, порядком, качеством). Биологическая форма являет собой нечто большее, чем просто форму, чем статическое расположение компонентов в целом. Становление и поддержание формы сопровождается перетеканием материи по живому организму. Здесь есть развитие, здесь происходит эволюция. Таким образом, понимание биологической формы неразрывно связано с пониманием метаболических и эволюционных процессов. На заре развития западной философии и науки пифагорейцы отличали Дискуссия приобрела следующую форму: «Ты спрашиваешь, из чего это сделано — из земли, огня, воды и т. д.?» Или ты спрашиваешь: «По какой модели, по какому Аристотель, первый биолог в западной традиции, также проводил различие между материей и формой, но в то же время соединял их через процесс развития3. В отличие от Платона, Аристотель считал, что форме не присуще изолированное существование и что она имманентна материи. Материя тоже не может существовать отдельно от формы. Материя, по Аристотелю, содержит в себе сущностную природу всех вещей, но только как возможность. Посредством формы эта сущность становится реальной, или настоящей. Процесс самореализации сущности в реальных явлениях был назван Аристотелем Аристотель создал формальную систему логики и набор унифицированных понятий, которые он применял к главным дисциплинам своего времени — биологии, физике, метафизике, этике и политике. Его философия и научные взгляды доминировали в западной мысли на протяжении двух тысячелетий. За это время его авторитет стал фактически столь же бесспорным, как и авторитет Церкви. Картезианский механицизм В XVI и XVII столетиях средневековое мировоззрение, основанное на аристотелевской философии и христианской теологии, претерпело радикальные изменения. Представление об органической, живой, духовной Вселенной сменилось концепцией мира как машины; мировая машина стала доминирующей метафорой эпохи. Столь радикальные перемены были вызваны новыми открытиями в физике, астрономии и математике. Совокупность этих открытий получила название Галилео Галилей предал качество научной анафеме, ограничив науку исследованием лишь тех явлений, которые могут быть измерены и исчислены. Это была очень удачная стратегия для новой науки, однако наша одержимость подсчетами и измерениями обошлась недешево. Как выразительно писал об этом психиатр Р. Д. Лэинг: Программа Галилео предлагает нам мертвый мир: исчезло все видимое, исчезли звук, вкус, осязание и запах, а вместе с ними пропали эстетическая и этическая чувствительность, система ценностей, качество, душа, сознание, дух. Переживание как таковое изгнано из мира научного внимания. За последние четыре столетия мало что повлияло на наш мир в такой степени, как это удалось дерзкой программе Галилео. Нам пришлось разрушить мир теоретически, прежде чем мы обрели возможность разрушить его практически5. Рене Декарт создал метод аналитического мышления: суть метода состояла в том, чтобы разбить сложный феномен на части и понять поведение целого на основе свойств этих частей. Декарт обосновывал свое Мировоззрение на фундаментальном разделении двух независимых и изолированных миров — разума и материи. Материальная вселенная, включая живые организмы, виделась Декарту машиной, которая в принципе может быть понята полностью посредством анализа ее мельчайших частей. Концептуальная модель, созданная Галилео и Декартом, — мир как совершенная машина, управляемая строгими математическими законами, — была триумфально завершена Исааком Ньютоном, чья великая система, В свете новой химической науки упрощенные механистические модели живых организмов, по большей части, были отброшены, однако суть картезианской идеи выжила. Животные остались машинами, хотя было понятно, что они гораздо сложнее, чем механический будильник, так как в них происходят сложные химические процессы. Соответственно, картезианский механицизм выразился в догме о том, что законы биологии в конечном счете могут быть сведены к законам физики и химии. В это же время нашла свое наиболее сильное и яркое выражение грубо механистическая психология, изложенная в полемическом трактате Движение романтиков Первая значительная оппозиция механистической картезианской парадигме сформировалась в романтическом направлении искусства, литературы и философии в конце XVIII и в XIX веке. Уильям Блейк, великий мистический поэт и художник, испытавший сильное влияние английского романтизма, был страстным критиком Ньютона. Он подытожил свою критику в знаменитых строках: Немецкие романтические поэты и философы вернулись к аристотелевской традиции, сосредоточившись на органической форме природы. Гете, центральная фигура этого движения, первым использовал термин Понимание органической формы играло важную роль и в философии Иммануила Канта, которого часто называют величайшим философом нового времени. Будучи идеалистом, Кант отделял мир явлений от мира «вещей в себе». Он полагал, что наука может предложить лишь механистические объяснения, однако утверждал при этом, что в сферах, где такие объяснения оказываются несостоятельными, научное знание следует дополнять признанием цели в природе. Важнейшей из таких сфер, по Канту, является понимание жизни10. В работе Романтический взгляд на природу как на «единое великое гармоничное целое» (Гете) побудил некоторых ученых того времени расширить поиск целостности до масштабов всей планеты и посмотреть на Землю как на единое, целое, живое создание. Отношение к Земле как к живому созданию, конечно, имеет древние традиции. Мифические образы Матери-Земли — древнейшие в религиозной истории человечества. Гайя, богиня Земли, почиталась как верховное божество в доэллинской Греции14. Еще ранее, в период от неолита до бронзового века, сообщества «старой Европы» поклонялись многочисленным богиням как инкарнациям Матери-Земли15. Идея Земли как живого одухотворенного существа продолжала цвести пышным цветом вплоть до эпохи Возрождения, пока средневековое мировоззрение не было полностью вытеснено картезианским образом мира как машины. Таким образом, когда ученые восемнадцатого века стали рассматривать Землю как живое существо, они возродили древнюю традицию, пробудили ее после относительно короткого периода спячки. Относительно недавно идея живой планеты была сформулирована на современном научном языке в виде так называемой В конце XVIII — начале XIX столетия влияние романтического движения было столь значительным, что биологов прежде всего заботила проблема биологической формы, а вопросы материального строения отошли на второй план. В особенности это относилось к великим французским школам сравнительной анатомии, или «морфологии», основанной Жоржем Кювье, который разработал систему зоологической классификации, основанной на подобии структурных связей18. Механицизм девятнадцатого столетия Во второй половине XIX века маятник качнулся назад к механицизму, когда усовершенствование микроскопа привело к многочисленным замечательным открытиям, продвинувшим развитие биологии19. Девятнадцатое столетие прославилось развитием эволюционных представлений; но в этот же период была сформулирована и теория клетки, зародилась современная эмбриология, расцвела микробиология, были открыты законы наследственности. Эти новые открытия прочно связали биологию с физикой и химией, и ученые возобновили усилия в поисках физико-химических объяснений жизни. Когда Рудольф Фирхов сформулировал теорию клетки в ее современном виде, фокус внимания биологов сместился от организмов к клеткам. Результаты взаимодействия между молекулярными строительными блоками рассматривались теперь как биологические функции, а не как отражение сложной работы организма в целом. В исследованиях в области микробиологии — новой сфере, которая выявила неожиданное богатство и сложность микроскопических живых организмов, — доминировал гений Луи Пастера, чьи прозорливые догадки и четкие формулировки оказали продолжительное воздействие на химию, биологию и медицину. Пастеру удалось выявить роль бактерий в определенных химических процессах, что заложило основы новой науки биохимии. Он показал также, что существует несомненная связь между микробами (микроорганизмами) и заболеванием. Открытия Пастера привели к упрощенной «микробной теории болезни», в которой бактерии рассматривались в качестве единственной причины болезни. Эта редукционистская теория была вытеснена альтернативной теорией, которую несколькими годами ранее разработал Клод Бернар, основатель современной экспериментальной медицины. Бернар настаивал на том, что между организмом и окружающей средой существует тесная взаимосвязь. Он первым обратил внимание на то, что каждый организм обладает также и внутренней средой, в которой живут его органы и ткани. Наблюдения Бернара показали, что в здоровом организме эта внутренняя среда остается весьма стабильной, даже если во внешней среде происходят значительные колебания. Его концепция постоянства внутренней среды предвозвестила важное понятие гомеостаза, выдвинутое Уолтером Кэнноном в 20-е годы. Новая наука биохимия неуклонно прогрессировала, и это укрепило биологов в убеждении, что все свойства и функции живых организмов в конце концов будут объяснены в рамках химических и физических законов. Наиболее четко эта надежда была выражена Жаком Лебом в его Витализм Триумфальное шествие биологии девятнадцатого столетия — теория клетки, эмбриология и микробиология — возвело механистическую концепцию жизни в ранг непоколебимой догмы в кругу биологов. И все же этот круг уже взращивал внутри себя семена следующей волны оппозиции, известной как школа Ограничения редукционистской модели проявились еще более драматично в проблемах развития и видоизменения клеток. На самых ранних стадиях развития высших организмов число их клеток увеличивается от одной до двух, до четырех и т. д., каждый раз удваиваясь. Поскольку в каждой клетке содержится идентичная генетическая информация, то каким образом они могут специализироваться в разных направлениях, становясь мышечными клетками, кровяными клетками, нервными клетками и т. д.? Эта основная проблема развития, проявляющаяся в самых различных вариантах во всех областях биологии, явным образом бросает вызов механистическому взгляду на жизнь. Прежде чем зародился органицизм, многие выдающиеся биологи отдали дань витализму, и в течение долгих лет дискуссии между механицизмом и холизмом ограничивались спорами между механицистами и виталистами20. Ясное понимание виталистической идеи очень полезно, поскольку она находится в радикальном контрасте по отношению к системному взгляду на жизнь, порожденному органицизмом в XX веке. Как витализм, так и органицизм противостоят сведению биологии лишь к химии и физике. Обе школы утверждают, что, хотя законы физики и химии применимы к организмам, они недостаточны для полного понимания феномена жизни. Поведение живого организма как единого целого не может быть понято на основе изучения его отдельных частей. Как сформулируют это системные теоретики несколько десятилетий спустя, целое — это нечто большее, чем сумма его частей. Виталисты и организменные биологи дают совершенно разные ответы на строго поставленный вопрос: в каком смысле целое превышает сумму своих частей? Виталисты утверждают, что некая нематериальная сущность, сила или поле, должна дополнить законы физики и химии, чтобы жизнь смогла быть понята. Организменные биологи заявляют, что дополнительным ингредиентом должно стать понимание Поскольку эти организующие связи являют собой модели взаимоотношений, присущие физической структуре организма, организменные биологи утверждают, что для понимания жизни нет нужды вводить какую-либо нематериальную сущность. Позже мы увидим, что понятие организации усовершенствовалось и превратилось в концепцию Если организменные биологи бросили вызов аналогиям картезианской машины, пытаясь понять биологическую форму в рамках более широкого значения организации, то виталисты фактически не выходили за пределы картезианской парадигмы. Их язык был ограничен теми же образами и метафорами; они просто привнесли туда нефизическую сущность, играющую роль разработчика и руководителя процессов организации, которые не укладываются в механистические объяснения. Таким образом, картезианский раскол между разумом и телом дал жизнь не только механицизму, но и витализму. Когда последователи Декарта вытеснили понятие разума из биологии и стали представлять тело как машину, «дух из машины» (выражение Артура Кестлера21) снова появился в виталистических теориях. Немецкий эмбриолог Ганс Дриш в начале века выступил против механистической биологии, проводя свои уникальные эксперименты над яйцами морского ежа; это закончилось созданием первой теории витализма. Когда Дриш разрушил одну из клеток эмбриона на самой ранней, Двухклеточной стадии, оставшаяся клетка развилась не в половинку морского ежа, но в полноценный организм, размером несколько меньше обычного. Точно так же, полноценные, но более мелкие организмы развивались после разрушения двух или трех клеток в четырехклеточном эмбрионе. Дриш понял, что яйца морского ежа совершают то, что машине не под силу: они регенерируют целое из некоторых отдельных частей. Чтобы объяснить феномен саморегуляции, Дриш, очевидно, настойчиво искал недостающую модель, или паттерн, организации22. Но вместо того, чтобы обратиться к понятию паттерна, он постулировал каузальный фактор, в качестве которого выбрал аристотелевскую Идея витализма была недавно возрождена в более изысканной форме Рупертом Шелдрейком, который постулирует существование нематериальных морфогенетических («генерирующих форму») полей как каузальных посредников развития и поддержания биологической формы23. Организменная биология В начале XX века организменные биологи, противостоя механицизму и витализму, взялись за проблему биологической формы с новым энтузиазмом, развивая и совершенствуя многие из важнейших прозрений Аристотеля, Гете, Канта и Кювье. Некоторые из главных особенностей того, что мы сегодня называем системным мышлением, явились следствием их напряженной работы24. Росс Харрисон, один из ранних представителей органицизма, исследовал концепцию организации, которая постепенно вытеснила старое понятие функции в психологии. Этот сдвиг от функции к организации знаменует сдвиг от механистического к системному мышлению, поскольку функция, по своей сути, есть понятие механистическое. Харрисон определил конфигурацию (форму) и взаимосвязь как два важных аспекта организации, которые впоследствии были объединены в понятие Биохимик Лоуренс Хендерсон известен тем, что уже в своих ранних работах применял термин Биолог Джозеф Вуджер утверждал, что организмы могут быть полностью описаны на языке составляющих их химических элементов «плюс организующие связи». Эта формулировка значительно повлияла на Джозефа Нидхэма, который считал, что публикация Вуджер и многие другие исследователи подчеркивали, что одной из ключевых особенностей организации живых организмов выступает ее иерархическая природа. Действительно, выдающимся свойством всякой жизни является тенденция к формированию многоуровневых структур — систем внутри других систем. Каждая из них образует целое по отношению к своим частям, в то же время являясь частью более объемного целого. Так, клетки объединяются, формируя ткани, ткани формируют органы, а органы формируют организмы. Последние, в свою очередь, существуют внутри социальных и экологических систем. Всюду в пределах живого мира мы находим живые системы, вкрапленные в другие живые системы. Еще на заре развития организменной биологии эти многоуровневые структуры стали называть иерархиями. Однако этот термин может легко ввести в заблуждение, поскольку ассоциируется с человеческими иерархиями; последние представляют достаточно ригидные структуры господства и контроля, что отнюдь не напоминает многоуровневый порядок, присущий природе. Мы увидим дальше, что важное понятие Ранние системные аналитики очень ясно представляли себе, что существуют различные уровни сложности и что на каждом уровне применимы свои типы законов. Понятие Системное мышление Идеи, выдвинутые организменными биологами в первой половине нашего столетия, способствовали зарождению нового способа мышления — Возникновение системного мышления стало настоящей революцией в истории западной научной мысли. Убеждение, что в любой сложной системе поведение целого может быть полностью понято на основе свойств его частей, было центральным в картезианской парадигме. Именно знаменитый декартовский метод аналитического мышления составлял суть современной научной мысли. При аналитическом, или редукционистском, подходе сами части можно анализировать дальше не иначе, как только сведя их к еще меньшим частям. Действительно, западная наука развивалась именно таким путем, и на каждой стадии мы имели дело с неким уровнем фундаментальных составляющих, анализировать которые дальше не представлялось возможным. Величайшим шоком для науки XX века стал тот факт, что систему нельзя понять с помощью анализа. Свойства частей не являются их внутренними свойствами, но могут быть осмыслены лишь в контексте более крупного целого. Таким образом, изменились представления о взаимоотношениях частей и целого. При системном подходе свойства частей могут быть выведены только из организации целого. Соответственно, системное мышление не концентрирует внимание на основных «кирпичиках», но интересуется основными принципами организации. Системное мышление Квантовая физика То, что система есть интегрированное целое, которое нельзя понять посредством анализа, оказалось еще более шокирующим в физике, чем в биологии. Со времен Ньютона физики полагали, что все физические явления могут быть сведены к свойствам тяжелых и твердых материальных частиц. Однако в 20-е годы квантовая теория заставила их принять тот факт, что твердые материальные объекты классической физики на субатомном уровне разлагаются на волноподобные вероятностные паттерны. Более того, эти паттерны представляют не вероятности объектов, а вероятности взаимосвязей. Субатомные частицы бессмысленны как изолированные сущности; они могут быть поняты лишь как взаимосвязи, или корреляции, между различными процессами наблюдения и измерения. Другими словами, субатомные частицы — Тем самым квантовая физика показывает, что мы не можем разложить мир на независимо существующие элементарные единицы. По мере того как мы сдвигаем фокус нашего внимания от макроскопических объектов к атомам и субатомным частицам, природа не демонстрирует нам никаких изолированных строительных блоков; вместо этого появляется сложная паутина взаимоотношений между различными частями единого целого. Как выразил это Вернер Гейзенберг, один из основателей квантовой теории: «Таким образом, мир оказывается сложной тканью событий, в которой связи различного рода сменяют друг друга, или перекрываются, или объединяются, тем самым определяя текстуру целого»31. Молекулы и атомы — структуры, описываемые квантовой физикой, — состоят из компонентов. Однако эти компоненты, субатомные частицы, не могут быть поняты как изолированные сущности, но должны быть определены через взаимосвязи. Как говорил Генри Стэпп: «Элементарная частица не является независимо существующей, доступной для анализа сущностью. По сути, это совокупность взаимосвязей, которая тянется наружу, к другим вещам»32. В формализме квантовой теории эти взаимоотношения принято выражать в вероятностных терминах, причем вероятности определяются динамикой всей системы. Если в классической механике свойства и поведение частей определяли соответствующие характеристики целого, то в квантовой механике ситуация изменилась на противоположную: именно целое определяет поведение частей. В 20-е годы ученые в области квантовой физики сражались за тот же концептуальный сдвиг от частей к целому, который породил и школу организменной биологии. И биологам, вероятно, трудно было бы преодолеть картезианский механицизм, если бы он так эффектно не провалился в физике, которая являла собой триумф картезианской парадигмы на протяжении трех столетий. Гейзенберг усмотрел в сдвиге от частей к целому центральный аспект концептуальной революции, и это произвело на него такое впечатление, что он даже озаглавил свою научную автобиографию Гештальт-психология Если первые биологи организменного направления обнаружили проблему органической формы и включились в дискуссию об относительных достоинствах механицизма и витализма с некоторым опозданием, то немецкие психологи вносили свой вклад в этот диалог с самого начала34. В немецком языке органическая форма обозначается словом Гештальт-психологи, возглавляемые Максом Вертхаймером и Вольфгангом Кёлером, видели в существовании нередуцируемых целых ключевой аспект восприятия. Живые организмы, как они утверждали, воспринимают вещи не как изолированные элементы, но как интегрированные перцептуальные паттерны — значимые организованные целостности, которые проявляют свойства, отсутствующие в их частях. Понятие паттерна было всегда присуще работам гештальт-психологов; часто в качестве аналогии они приводили музыкальную тему — ее можно сыграть в разных тональностях, но при этом она не потеряет своих существенных особенностей. Подобно организменным биологам, гештальт-психологи видели свою школу как третий путь, помимо механицизма и витализма. Гештальт-школа внесла значительный вклад в область психологии, особенно в сферу обучения и понимания природы ассоциаций. Несколько десятилетий спустя, в 60-е годы, холистический подход к психологии породил соответствующую школу психотерапии, известную как гештальт-терапия, которая придает огромное значение интеграции индивидуальных переживаний в значимые целостности36. В Германии 20-х годов, в период Веймарской республики, как организменная биология, так и гештальт-психология являли собой часть более обширного интеллектуального направления, движения протеста против нарастающей фрагментации и отчуждения человеческой природы. Вся Веймарская культура характеризовалась антимеханистическим мировоззрением, «жаждой целостности»37. Организменная биология, гештальт-психология, экология, а позже и общая теория систем — все это взросло на этом холистическом Экология Если биология столкнулась с нередуцируемой целостностью в организмах, квантовая физика — в атомных явлениях, а гештальт-психология — в восприятии, то экологи обнаружили ее при изучении сообществ животных и растений. Новая наука, экология, вышла из организменной школы биологии в девятнадцатом веке, когда биологи начали изучать сообщества организмов. Экология — от греческого Поскольку язык ранних экологов был весьма близок к языку организменной биологии, не удивительно, что они сравнивали биологические сообщества с организмами. Например, Фредерик Клементе, американский эколог-ботаник и пионер в изучении преемственности [succession], рассматривал сообщества растений как Термин Новая наука экология обогатила зарождающееся системное мышление, введя два новых понятия — Сегодня мы знаем, что большинство организмов не просто являются членами экологического сообщества, но и сами представляют собой сложные экосистемы, содержащие множество более мелких организмов, которые обладают значительной автономией и все же гармонично интегрированы в функционирование целого. Итак, существует три типа живых систем — организмы, части организмов и сообщества организмов, — каждый из которых представляет интегрированное целое и чьи существенные свойства формируются через взаимодействие и взаимозависимость частей. За миллиарды лет эволюции многие биологические виды сформировали настолько тесные сообщества, что вся их система является огромным организмом, включающим множество особей44. Пчелы и муравьи, например, не могут выжить в изоляции, но в больших количествах они ведут себя почти как клетки сложного организма с коллективным интеллектом и способностями к адаптации, в значительной степени превышающими способности индивидуальных членов. Подобная же тесная координация деятельности, известная нам как симбиоз, наблюдается между разными биологическими видами. И здесь опять результирующая живая система обладает характеристиками отдельных организмов45. С самого зарождения экологии считалось, что экологические сообщества состоят из организмов, связанных между собой по сетевому принципу через кормовые отношения. Эта идея постоянно встречается в работах натуралистов XIX века, и когда в 1920-е годы началось изучение пищевых цепей и пищевых циклов, эти понятия были расширены До современной концепции пищевых паутин. Конечно, По мере того как понятие сети приобретало все большую популярность в биологии, системные мыслители стали использовать сетевые модели на всех системных уровнях, рассматривая организмы как сети клеток, органов и систем органов, подобно тому как экосистемы воспринимаются в виде сетей индивидуальных организмов. Соответственно, потоки материи и энергии сквозь экосистемы трактуются как продолжение внутренних метаболических траекторий организма. Взгляд на живые системы как на сети помогает по-новому взглянуть на так называемые Другими словами, паутина жизни состоит из сетей внутри сетей. На каждом уровне, после достаточного увеличения, узлы сети оказываются более мелкими сетями. Мы стараемся строить эти системы, вкрапленные в более крупные системы, по иерархическому принципу, помещая большие системы над меньшими на манер пирамиды. Однако это только человеческая проекция. В природе не существует «над» и «под», не существует иерархий. Существуют лишь сети, вложенные в другие сети. В последние десятилетия сетевой подход приобретает все большую значимость в экологии. Как сказал об этом эколог Бернар Паттен в своей заключительной речи на недавней конференции по экологическим сетям: «Экология — это именно сети… Полностью понять экосистемы — значит понять сети»47. Действительно, во второй половине столетия концепция сети была определяющей в развитии научного понимания не только экосистем, но и самой природы жизни. |
|
|