"Паутина жизни. Новое научное понимание живых систем" - читать интересную книгу автора (Фритьоф Капра)Глава 6 Математика сложных системВзгляд на живые системы как на самоорганизующиеся сети, все компоненты которых взаимосвязаны и взаимозависимы, в процессе развития истории философии и науки неоднократно высказывался в той или иной форме. Однако подробные модели самоорганизующихся систем предложены лишь недавно, когда стал доступен новый математический инструментарий, позволивший ученым смоделировать нелинейные характеристики взаимосвязанности сетей. Открытие этой новой Теории и модели самоорганизации, описанные в предыдущих главах, имеют дело с весьма сложными системами, состоящими из тысяч взаимозависимых химических реакций. За последние три десятилетия появилось множество новых концепций и технологий для работы с феноменами такой огромной сложности; на базе этих концепций в настоящее время начинает формироваться согласованная математическая структура. И все же четкого названия этой новой математики пока нет. По научно-популярной литературе она известна как математика сложных систем, более технические названия звучат как теория динамических систем, системная динамика, комплексная динамика или нелинейная динамика. Вероятно, наиболее широко используется термин Чтобы избежать путаницы, полезно помнить, что теория динамических систем не относится к физическим феноменам, это — математическая теория, концепции и методы которой применимы к достаточно широкому диапазону явлений. То же касается теории хаоса и теории фракталов — важных разделов теории динамических систем. Новая математика (мы рассмотрим это подробно) является математикой взаимоотношений и паттернов. Имея скорее качественный, чем количественный характер, она тем самым обусловливает сдвиг акцента, что характерно для системного мышления — от объектов к взаимоотношениям, от количества к качеству, от материи к паттерну. Развитие мощных высокоскоростных компьютеров сыграло решающую роль в освоении сложных систем. Математики сегодня могут решать сложные уравнения, которые раньше не поддавались решению, и прослеживать решения в виде кривых на графике. Таким способом они обнаружили новые качественные паттерны поведения этих сложных систем, новый уровень порядка, лежащий в основе кажущегося хаоса. Классическая наука Чтобы оценить новизну новой математики сложных систем, представляется интересным сопоставить ее с математикой классической науки. Наука, в современном понимании этого термина, появилась в конце XVI века, когда Галилео Галилей первым начал ставить систематические эксперименты, используя математический язык для формулирования открытых им законов природы. В те времена науку все еще называли «натуральной философией», и когда Галилей говорил «математика», он имел в виду геометрию. «Философия, — писал он, — записана в той Великой книге, которая всегда перед нашим взором; но мы не сможем понять ее, если сначала не выучим ее язык и те символы, которыми она написана. Этот язык — математика, а символы — это треугольники, окружности и другие геометрические фигуры»1. Галилео унаследовал эту точку зрения от философов античной Греции, которые были склонны геометризировать все математические проблемы и искать ответы в рамках геометрических фигур. Есть свидетельства, что над входом в Академию Платона, главную греческую школу науки и философии на протяжении девяти столетий, была высечена надпись: «Да не войдет сюда несведущий в геометрии». Несколько веков спустя совершенно иной подход к решению математических проблем, известный как (а+b)2 = а2 + 2ab + Ь2. В высшей алгебре рассматриваются взаимосвязи, называемые у = х+ 1 переменная у = f(x). Таким образом, во времена Галилея существовало два различных подхода к решению математических проблем — геометрия и алгебра, которые пришли из разных культур. Два эти подхода были объединены Рене Декартом. Моложе Галилея на поколение, Декарт более всего известен как основатель современной философии. Однако он был и блестящим математиком. Изобретенный Декартом метод преобразования алгебраических формул и уравнений в визуальную геометрическую форму стал величайшим из его многочисленных вкладов в математику. Метод, известный как аналитическая геометрия, немыслим без декартовых координат — системы координат, изобретенной Декартом и названной в его честь. Например, когда взаимосвязь между двумя переменными Подобным же образом уравнение у = х2 представляется в виде параболы (рис. 6–2). Уравнения такого типа, соответствующие кривым линиям в декартовой сетке координат, называются нелинейными. Их отличительной чертой служит то, что одна или больше его переменных возведены в степень не менее 2-й. Дифференциальные уравнения В свете нового метода Декарта законы механики, открытые Галилеем, могли быть выражены либо в алгебраической форме как уравнения, либо в геометрической — как зримые фигуры. Однако существовала важная математическая проблема, которую ни Галилей, ни Декарт, ни кто-либо из их современников не могли решить. - Рис. 6–1. График, соответствующий уравнению у = х + 1. Для каждой точки на прямой линии значение у- координаты всегда будет на единицу больше значения соответствующей х- координаты У Рис. 6–2. График, соответствующий уравнению у = х2. Для любой точки параболы, у-координата равна квадрату х-координаты Они не могли составить уравнение, описывающее движение тела с переменной скоростью, с ускорением или замедлением. Чтобы понять эту проблему, рассмотрим два движущихся тела: одно передвигается с постоянной скоростью, другое — с ускорением. Если мы построим для них график зависимости расстояния от времени, то получим две кривые, показанные на рис. 6–3. Скорость ускоряющегося тела меняется каждое мгновение, и это именно то, что Галилей и его современники не могли выразить математически. Иными словами, они не могли вычислить точное значение скорости в данный момент времени. Расстояние Рис. 6–3. Графики движения двух тел: одного движущегося с постоянной скоростью, другого — с ускорением Столетие спустя великану классической науки Исааку Ньютону и, примерно в то же время, немецкому философу и математику Готфриду Вильгельму Лейбницу удалось сделать это. Для того чтобы решить эту проблему, на протяжении веков мучившую математиков и натурфилософов, Ньютон и Лейбниц, независимо друг от друга, изобрели новый математический метод, сегодня известный как дифференциальное исчисление. Метафорически этот метод называется «воротами в высшую математику». Понять, каким образом Ньютон и Лейбниц подошли к решению проблемы, представляется весьма поучительным и не требует знания специального математического языка. Всем известно, как вычислить скорость движущегося тела, если она остается постоянной. Если вы ведете машину со скоростью 20 км/ч, то это значит, что за час вы проедете 20 километров, за 2 часа — 40 и т. д. Другими словами, для того чтобы определить значение скорости машины, вы просто делите расстояние (например, 40 километров) на время, которое у вас уходит, чтобы его проехать (например, 2 часа). Применительно к нашему графику это означает, что разность между двумя координатами расстояния нужно поделить на разность между двумя соответствующими координатами времени, как это показано на рис. 6–4. Если скорость машины меняется — а это всегда происходит в реальной жизненной ситуации, — то за один час вы проедете больше или меньше 20 км, в зависимости от того, как часто ускоряли или замедляли ход машины. Как же в таком случае вычислить точную скорость в определенный момент времени? Вот как это сделал Ньютон. Он предложил сначала вычислить (в случае ускоряющегося движения) примерную скорость между двумя точками, заменив участок кривой между ними прямым отрезком. Как видно из рис. 6–5, скорость опять определяется соотношением между Затем Ньютон предложил: давайте стягивать треугольник, образованный кривой и разностями координат, сдвигая две точки на кривой все ближе и ближе друг к другу. Пока мы делаем это, отрезок прямой между двумя точками будет все ближе и ближе подходить к кривой, а погрешность в вычислении скорости между двумя точками будет все меньше и меньше. В конце концов когда мы достигаем Стянуть этот треугольник — в математическом смысле — к нулю и вычислить соотношение между двумя бесконечно малыми разностями — задача отнюдь не тривиальная. Точное определение предела бесконечно малого — самый трудный момент всей процедуры исчисления. Рис. 6–4. Чтобы вычислить постоянную скорость, нужно поделить разность между координатами расстояния на разность между координатами времени Рис. 6–5. Вычисление приблизительного значения скорости между двумя точками в случае ускоряющегося движения На математическом языке бесконечно малая разность называется дифференциалом; поэтому и исчисление, изобретенное Ньютоном и Лейбницем, известно как дифференциальное. Уравнения, в которые входят дифференциалы, называются дифференциальными уравнениями. Изобретение дифференциального исчисления явилось для науки гигантским шагом вперед. Впервые в человеческой истории понятию бесконечного, волновавшему философов и поэтов с незапамятных времен, было дано точное математическое определение; оно открыло необозримые новые возможности для анализа естественных феноменов. Мощь нового аналитического инструмента можно проиллюстрировать на знаменитом парадоксе Зенона, представителя ранней элейской школы греческой философии. Согласно Зенону, великий атлет Ахилл никогда не сможет догнать черепаху в забеге, если черепаха стартует первой, поскольку, как только Ахилл наверстает начальное отставание, черепаха за это время продвинется еще дальше, а когда Ахилл пробежит и это расстояние, у черепахи опять окажется фора, и так до бесконечности. И хотя отставание атлета продолжает сокращаться, оно никогда не исчезнет. В каждый данный момент черепаха всегда будет впереди. Поэтому, как заключает Зенон, даже самый быстрый бегун никогда не сможет состязаться с медлительной черепахой. Греческие философы и их последователи веками спорили по поводу этого парадокса, но никак не могли разрешить его, поскольку точное определение бесконечно малого ускользало от них. Упущение в аргументации Зенона кроется в том, что, даже если Ахиллу придется сделать бесконечное число В XVII веке Исаак Ньютон использовал свое исчисление для описания любых возможных движений твердых тел с помощью набора дифференциальных уравнений, которые с тех пор стали известны как Лицом к лицу со сложностью В течение XVIII и XIX столетий уравнения движения Ньютона были облечены в более общие, более абстрактные и более элегантные формы некоторыми из величайших умов в истории математики. Успешные новые формулировки, предложенные Пьером Лапласом, Леонардом Эйлером, Жозефом Лагранжем и Вильямом Гамильтоном, не изменили содержания ньютоновых уравнений, но их возрастающая сложность позволила ученым анализировать постоянно расширяющийся диапазон естественных явлений. Применяя свою теорию к движению планет, Ньютон сам воспроизвел основные особенности Солнечной системы, правда, без учета некоторых тонкостей. Лаплас, однако, усовершенствовал вычисления Ньютона до такой степени, что ему удалось объяснить движение планет, их спутников и комет вплоть до мельчайших деталей, равно как и механизм приливов и других явлений, связанных с гравитацией. Воодушевленные этими яркими успехами ньютоновской механики в астрономии, физики и математики распространили ее на движение жидкостей, на вибрацию струн, колоколов, других упругих тел — и она работала! Впечатляющие достижения заставили ученых начала XIX века поверить, что Вселенная на самом деле представляет собой гигантскую механическую систему, функционирующую в соответствии с ньютоновскими законами движения. Так ньютоновы дифференциальные уравнения стали математической основой механистической парадигмы. Мировая машина Ньютона казалась совершенно каузальной и детерминированной. Все, что происходит, обусловливается определенной причиной и вызывает определенный эффект, и будущее любой части этой системы можно — в принципе — предсказать с абсолютной достоверностью, если только в начальный момент времени ее состояние известно во всех подробностях. На практике, конечно, вскоре стала очевидной ограниченность попыток моделирования Природы с помощью ньютоновых уравнений. Как замечает британский математик Ян Стюарт, С другой стороны, физики и химики уже долгое время наблюдали в поведении газов некие регулярности, нашедшие свое отражение в формулировке так называемых газовых законов — простых математических связей между температурой, объемом и давлением газа. Каким образом эта явная простота могла быть выведена из исключительно сложного движения отдельных молекул? В XIX веке великий физик Джеймс Кларк Максвелл нашел ответ. И хотя поведение молекул газа не могло быть определено абсолютно точно, ученый утверждал, что наблюдаемые регулярности могут быть обусловлены Мельчайшая порция вещества, которую мы можем подвергнуть эксперименту, состоит из миллионов молекул, ни одна из которых индивидуально нами не ощущается. Мы не можем поэтому установить реальное движение ни одной из этих молекул; следовательно, мы вынуждены отказаться от прямого исторического метода и принять статистический метод для работы с большими группами молекул4. Метод Максвелла и в самом деле оказался весьма успешным и позволил физикам объяснить основные свойства газа на основе усредненного поведения его молекул. Например, стало ясно, что давление газа — это сила, вызванная усредненным напором молекул5; оказалось также, что температура пропорциональна усредненной энергии движения молекул. Статистика и теория вероятности, теоретическая основа метода, развивались начиная еще с XVII века и уже были готовы к применению в теории газов. Объединение статистических методов с ньютоновской механикой привело к возникновению новой области науки, которая, соответственно, была названа Нелинейность Итак, к концу XIX века ученые разработали два различных математических инструмента для моделирования естественных явлений — точный (детерминистские уравнения движения для простых систем) и уравнения термодинамики, основанные на статистическом анализе усредненных величин для сложных систем. И хотя эти два подхода совершенно различны, есть у них и общая черта: они используют Поэтому, как только нелинейные уравнения появлялись, их тут же «линеаризовали», т. е. заменяли линейными приближениями. В результате, вместо того чтобы описывать явления во всей их сложности, уравнения классической науки имели дело с Решительная перемена за последние три десятилетия выразилась в осознании того, что Природа, по выражению Стюарта, «безжалостно нелинейна». Нелинейные процессы преобладают в неодушевленном мире в гораздо более значительной степени, чем мы предполагали. Они также являются существенным аспектом сетевых паттернов живых систем. Теория динамических систем — первая математическая система, позволяющая ученым работать со всем диапазоном сложности этих нелинейных феноменов. Исследования нелинейных систем за последние десятилетия оказали значительное влияние на науку в целом, поскольку заставили нас заново оценить некоторые фундаментальные представления о взаимоотношениях между математической моделью и теми феноменами, которые она описывает. Одно из таких представлений касается нашего понимания простоты и сложности. Пребывая в мире линейных уравнений, мы думали, что системы, описываемые простыми уравнениями, отличаются простым поведением, в то время как описываемые сложными уравнениями ведут себя гораздо сложнее. В нелинейном мире — который, как мы начинаем обнаруживать, составляет львиную долю реального мира — простые детерминистские уравнения могут таить в себе неожиданное богатство и разнообразие поведения. С другой стороны, сложное и кажущееся хаотичным поведение может породить упорядоченные структуры, тонкие и изящные паттерны. В теории хаоса сам термин Еще одно важное свойство нелинейных уравнений, которое всегда смущало ученых, заключается в том, что точное предсказание часто бывает неосуществимо, даже если уравнения строго детерминированы. Эта поразительная особенность нелинейности обусловила важный сдвиг акцента от количественного анализа к качественному. Обратная связь и итерации Третье важное свойство нелинейных систем вытекает из частого возникновения в них процессов с усиливающей обратной связью. В линейных системах малые изменения производят малые эффекты, а значительные эффекты являются следствием либо больших изменений, либо суммы множества мелких изменений. В нелинейных системах, напротив, мелкие изменения могут вызвать драматический эффект, если они многократно усиливаются через обратную связь. Такие нелинейные процессы с обратной связью лежат в основе неустойчивости и внезапного появления новых форм порядка, столь характерных для самоорганизации. Математически петля обратной связи соответствует особому типу нелинейного процесса, известному как х → Зх Зх → 9х 9х → 27х и т. д. Каждый из этих шагов называется х → kх. Часто встречаемой в нелинейных системах итерацией, очень простой и в то же время производящей огромную сложность, является отображение: х где переменная Исследование итераций разнообразных логистических отображений представляет собой увлекательное упражнение, которое можно легко осуществить с помощью карманного калькулятора9. Чтобы понять существенную особенность этих итераций, снова выберем значение k=3: х Переменную Отметив эти числа на двух участках оси, можно увидеть, что величины от 0 до 0,5 отображаются числами от 0 до 0,75. Таким образом, 0,2 превращается в 0,48, а 0,4 становится 0,72. Числа от 0,5 до 1 отображаются на том же участке, но в обратном порядке. Так, 0,6 превращается в 0,72, а 0,8 становится 0,48. Общий эффект показан на рис. 6–6. Отображение растягивает отрезок от 0 до 1,5, а затем снова сворачивает его так, что значения пробегают от 0 до 0,75 и обратно. Итерация этого отображения выльется в повторяющееся растягивание и сворачивание операций подобно тому, как пекарь вновь и вновь месит тесто, сворачивая и растягивая его. Эту итерацию очень удачно назвали Даже самые мощные компьютеры округляют свои вычисления, ограничивая количество цифр после точки; и после большого количества итераций даже мелкие погрешности округления складываются в значительную неопределенность, исключая любые предсказания. 11реобра-зование пекаря есть прототип нелинейных сверхсложных непредсказуемых процессов, обозначаемых специальным термином «хаос». Пуанкаре и следы хаоса Теория динамических систем — математическая теория, позволившая внести порядок в хаос, — была разработана совсем недавно, однако ее основы были заложены в начале XX века одним из величайших математиков нового времени Анри Пуанкаре. Среди математиков своего века Пуанкаре был последним великим эрудитом. Ученый внес весомый вклад фактически во все разделы математики. Собрание его сочинений исчисляется несколькими сотнями томов. В конце XX века нам не трудно оценивать достижения Пуанкаре: важнейшее из них состояло в том, что он вернул в математику визуальные образы10. Начиная с XVII века, стиль европейской математики постепенно смещался от геометрии (математики визуальных форм) к алгебре (математике формул). Так, например, Лаплас, один из великих формализаторов, гордился тем, что в его Визуальная математика Пуанкаре, однако, не равнозначна геометрии Евклида. Это геометрия нового типа, математика паттернов и взаимоотношений, известная как топология. Топология — это геометрия, в которой все длины, углы и площади могут деформироваться как угодно. Так, треугольник может быть постепенно трансформирован в прямоугольник, прямоугольник — в квадрат, квадрат — в окружность. Точно так же куб может превратиться в цилиндр, цилиндр — в конус, конус — в сферу. Благодаря этим непрерывным преобразованиям топологию часто называют «резиновой геометрией». Все фигуры, которые могут быть преобразованы друг в друга посредством непрерывного сгибания, растягивания и кручения, называются топологически эквивалентными. Тем не менее не все можно осуществить через топологическую трансформацию. Фактически топология занимается как раз теми свойствами геометрических фигур, которые не изменяются при их трансформации. Пересечения линий, например, остаются пересечениями, а отверстие в торе (бублике) нельзя трансформировать так, чтобы оно пропало. Таким образом, бублик может быть топологически трансформирован в кофейную чашечку (отверстие превратится в отверстие ручки), но никак не в блин. Тогда топология оказывается действительно математикой взаимоотношений, неизменяемых, или инвариантных, паттернов. Пуанкаре использовал топологическую концепцию для анализа качественных особенностей сложных динамических проблем — и тем самым заложил основы математики сложных систем, которая сформировалась лишь столетие спустя. Среди проблем, проанализированных Пуанкаре, была знаменитая проблема трех тел в небесной механике (относительное движение трех тел под влиянием их взаимного гравитационного притяжения), которую прежде никому не удавалось решить1'. Применив свой топологический метод к слегка упрощенной проблеме трех тел, Пуанкаре смог определить общую форму их траекторий, и нашел, что она отличается устрашающей сложностью: Когда пытаешься представить фигуру, образуемую этими двумя кривыми и бесконечными их пересечениями… обнаруживаешь некую сеть, паутину, или бесконечно густую решетку; ни одна из этих кривых никогда не может пересечь саму себя, но должна загибаться очень сложным образом, чтобы пересечь нити паутины бесконечно много раз. Поражает сложность этой фигуры, которую я даже не пытаюсь нарисовать12. То, что Пуанкаре изображал в уме, теперь называется Траектории в абстрактных пространствах Математический аппарат, позволивший ученым в течение трех последних десятилетий обнаружить упорядоченные паттерны в хаотических системах, основан на топологическом подходе Пуанкаре и тесно связан с развитием компьютеров. С помощью современных высокоскоростных компьютеров ученые могут решать нелинейные уравнения такими методами, которые ранее были недоступны; легко могут вычерчивать сложные траектории, которые Пуанкаре даже не пытался изобразить. Как большинство читателей помнят со школьной скамьи, уравнение решают посредством различных манипуляций с ним, пока не получают окончательную формулу — решение. Оно и называется «аналитическим» решением уравнения. Результатом всегда является формула. Большинство нелинейных уравнений, описывающих естественные явления, слишком сложны для того, чтобы их можно было решить аналитически. Однако есть еще один способ — так называемое «численное» решение уравнения. Оно включает в себя метод проб и ошибок. Вы пробуете разнообразные комбинации чисел для переменных, пока не найдете те, которые удовлетворяют уравнению. Была разработана специальная техника и специфические приемы для эффективного решения этой задачи, но для большинства уравнений подобный процесс оказывается слишком громоздким, занимает много времени и дает очень грубые, приблизительные решения. Ситуация изменилась с появлением нового поколения компьютеров. Теперь у нас есть программы для исключительно быстрого и точного численного решения уравнений. Применяя новые методы, мы можем решать нелинейные уравнения с любой степенью точности. Тем не менее это решения совершенно иного плана. Результатом становится не формула, а огромное множество значений переменных, удовлетворяющих уравнению, и компьютер можно запрограммировать так, чтобы он графически вычерчивал решение в виде кривой или множества кривых. Такая технология позволила ученым решить сложные нелинейные уравнения, связанные с хаотическими феноменами, и обнаружить порядок в кажущемся хаосе. Для того чтобы обнаружить эти упорядоченные паттерны, переменные сложной системы отображаются в абстрактном математическом пространстве — так называемом СкоростьУгол Скорость Угол Рис. 6–7. Двухмерное фазовое пространство маятника Если теперь мы начертим декартову систему координат, в которой одна ось соответствует углу, а другая — скорости (рис. 6–7), эта система координат представит двухмерное пространство, в котором каждая определенная точка соответствует возможному состоянию движения маятника. Посмотрим, где располагаются эти точки. В состоянии крайнего отклонения скорость равна нулю. Это дает нам две точки на горизонтальной оси. В центре, где угол равен нулю, скорость максимальна и либо положительна (когда маятник движется, например, вправо), либо отрицательна (когда маятник движется в противоположном направлении). Это дает нам две точки на вертикальной оси. Эти четыре точки в фазовом пространстве, которые мы обозначили на рис. 6–7, отражают крайние состояния маятника — максимальное отклонение и максимальную скорость. Точное расположение этих точек будет зависеть от выбранных нами единиц измерения. Если мы продолжим наблюдения и отметим точки, соответствующие состояниям движения между крайними положениями, то обнаружим, что они лежат на замкнутой петле. Можно превратить петлю в окружность, должным образом выбрав единицы измерения, но, в общем случае, это будет нечто вроде эллипса (рис. 6–8). СкоростьУгол Скорость Угол Рис. 6–8. Траектория маятника в фазовом пространстве Эта кривая называется траекторией маятника в фазовом пространстве и полностью описывает движение системы. Все переменные системы (в нашем простом случае — две) представлены единственной точкой, всегда расположенной где-то на этой кривой. С каждым полным циклом качания маятника точка в фазовом пространстве будет описывать петлю. В любой момент мы можем измерить две координаты точки в фазовом пространстве и таким образом узнать точное состояние системы (угол и скорость). Заметим, что эта кривая никоим образом не является траекторией самого маятника. Это кривая, образованная двумя переменными системы в абстрактном математическом пространстве. В этом и заключается методика фазового пространства. Переменные данной системы изображаются в абстрактном пространстве, причем одна точка описывает всю систему. По мере того как система изменяет свое состояние, точка вычерчивает в фазовом пространстве траекторию — в нашем случае замкнутую кривую. Когда система является не простым маятником, а гораздо более сложной структурой, у нее, соответственно, больше переменных, но метод остается прежним. Каждая переменная представлена координатой в отдельном измерении фазового пространства. Если в системе 16 переменных, мы получим 16-мерное пространство. Одна точка в этом пространстве будет полностью описывать состояние всей системы, поскольку эта точка имеет 16 координат, каждая из которых соответствует одной из 16 переменных системы. Скорость Рис. 6–9. Траектория маятника с трением в фазовом пространстве Безусловно, мы не можем визуально воспринять фазовое пространство с 16 измерениями; потому его и называют абстрактным математическим пространством. Математики не испытывают никаких проблем с такими абстракциями. Они вполне комфортно чувствуют себя в пространствах, которые нельзя визуализировать. В любом случае, по мере изменения системы точка, определяющая ее состояние в фазовом пространстве, будет двигаться по этому пространству, вычерчивая некую траекторию. Различные начальные состояния системы соответствуют различным начальным точкам в фазовом пространстве, что, в общем случае, обусловливает различные траектории. Странные аттракторы Теперь вернемся к нашему маятнику и отметим, что это был идеализированный маятник без трения, раскачивающийся вправо-влево в бесконечном движении. Это типичный пример классической физики, где трением, как правило, пренебрегают. Реальный маятник всегда подвержен некоторому трению, замедляющему его ход, поэтому рано или поздно он остановится. В двухмерном фазовом пространстве это движение отображено кривой, закручивающейся к центру, как показано на рис. 6–9. Эта траектория называется В течение последующих двадцати лет метод фазового пространства использовался для исследования множества сложных систем. Каждый раз ученые и математики составляют нелинейные уравнения, решают их численными методами, а компьютеры вычерчивают решения в виде траекторий в фазовом пространстве. К своему великому удивлению, исследователи обнаружили, что число различных аттракторов весьма ограничено. Их формы можно классифицировать топологически, а общие динамические свойства системы — вывести из формы ее аттрактора. Существует три основных типа аттракторов: точечные, соответствующие системам, которые достигают устойчивого равновесия; периодические, соответствующие периодическим колебаниям; и так называемые странные аттракторы, соответствующие хаотическим системам. Типичный пример системы со странным аттрактором представляет собой «хаотический маятник», впервые исследованный японским математиком Йошисуке Уэда в конце 1970-х годов. Это нелинейная электронная схема с внешним питанием, относительно простая, но с исключительно сложным поведением16. Каждое колебание этого хаотического генератора колебаний уникально. Система никогда не повторяет себя, и каждый цикл открывает новую область фазового пространства. Тем не менее, несмотря на кажущуюся неустойчивость движения, точки в фазовом пространстве расположены отнюдь не беспорядочно. Вместе они формируют сложный высокоорганизованный паттерн — странный аттрактор, который теперь носит имя Уэда. Рис. 6-10. Аттрактор Уэда. Из Uedaetal. (1993) Аттрактор Уэда — это траектория в двухмерном фазовом пространстве, которая образует Одно удивительное свойство странных аттракторов заключается в том, что они, как правило, ограничены малым числом измерений — даже в многомерном фазовом пространстве. Например, система может содержать 50 переменных, но ее движение при этом описывается трехмерным странным аттрактором — свернутой поверхностью в 50-мерном пространстве. Это, естественно, характеризует высокую степень порядка. Таким образом, хаотичное поведение — в современном научном понимании этого термина — разительно отличается от беспорядочного, неустойчивого движения. С помощью странных аттракторов можно определить различие между обычной беспорядочностью, или «Эффект бабочки» Как мы видели на примере преобразования пекаря, для хаотических систем характерна чрезвычайная чувствительность к начальным условиям. Мельчайшие изменения в начальном состоянии системы со временем приводят к крупномасштабным последствиям. В теории хаоса это называется «эффектом бабочки». Основой для названия послужило полушутливое утверждение, что бабочка, всколыхнув сегодня воздух в Пекине, может через месяц оказаться причиной бури в Нью-Йорке. Эффект бабочки был открыт в начале 1960-х годов метеорологом Эдвардом Лоренцом, разработавшим очень простую модель погодных условий, состоящую из трех связанных нелинейных уравнений. Он обнаружил, что решения его уравнений чрезвычайно чувствительны к начальным состояниям. Начинаясь практически в одной точке, две траектории будут развиваться совершенно по-разному, исключая возможность каких бы то ни было заблаговременных предсказаний17. Это открытие привело в замешательство все мировое научное сообщество, поскольку ученые давно привыкли полагаться на детерминированные уравнения для предсказания с большой точностью таких феноменов, как солнечные затмения или появление комет. Казалось непостижимым, что четко детерминированные уравнения движения могут привести к непредсказуемым результатам. И все же именно это обнаружил Лоренц. По его собственным словам: Обычный человек, видя, что мы достаточно эффективно предсказываем приливы на несколько месяцев вперед, спросит, почему мы не можем проделать то же самое в отношении атмосферы. Ведь это всего лишь другая система потоков и ее законы не более сложны. Но я понял, что любая физическая система, не проявляющая периодичности в поведении, непредсказуема18. Модель Лоренца не представляет какого-то реального феномена погоды, но служит поразительным примером того, как простой набор нелинейных уравнений может привести к крайне сложному поведению. Публикация этой модели в 1963 году знаменовала зарождение теории хаоса, и аттрактор, известный с тех пор как аттрактор Лоренца, стал самым известным и широко изучаемым из странных аттракторов. В то время как аттрактор Уэда двухмерен, аттрактор Лоренца расположен в трех измерениях (рис. 6-11). Вычерчивая его, точка в фазовом пространстве движется по видимости случайным образом и описывает несколько колебаний нарастающей амплитуды вокруг одного центра, затем следуют колебания вокруг второго центра, потом она внезапно возвращается и осциллирует вокруг первого центра и т. д. Рис. 6-11. Аттрактор Лоренца. Из Mosekildeetal. (1994) От количества к качеству Невозможность предсказать, какую точку в фазовом пространстве пересечет траектория аттрактора Лоренца в определенный момент времени, являет собой общую для хаотических систем особенность. Однако это вовсе не означает, что теория хаоса не дает оснований никаким предсказаниям. Возможны чрезвычайно точные прогнозы относительно качественных особенностей поведения системы, а не точных значений ее переменных в определенный момент времени. Новая математика, таким образом, представляет сдвиг от количества к качеству, что характерно Для системного мышления вообще. В то время как традиционная математика имеет дело с количествами и формулами, теория динамических систем связана с качеством и паттерном. Действительно, анализ нелинейных систем с помощью топологических характеристик их аттракторов известен как Количественный анализ динамической системы сводится к определению аттракторов системы и сфер их притяжения, а также классификации их в рамках топологических характеристик. Результатом является динамическая картина всей системы, называемая фазовым портретом. Математические методы анализа фазовых портретов основаны на новаторских трудах Пуанкаре; впоследствии они были развиты и усовершенствованы американским топологом Стивеном Смейлом в начале 60-х19. Смейл использовал свой метод не только для анализа систем, представленных определенным набором нелинейных уравнений, но также для изучения того, как ведут себя эти системы при небольших изменениях в их уравнениях. По мере того как параметры уравнений медленно меняются, фазовый портрет — т. е. формы его аттракторов и сферы притяжения — как правило, претерпевает соответствующие плавные изменения, не изменяя своих основных характеристик. Смейл использовал термин «структурно устойчивый» для описания таких систем, в которых небольшие отклонения в уравнениях не изменяют основного характера фазового портрета. Во многих нелинейных системах, однако, малые изменения в определенных параметрах могут обусловить серьезные изменения основных характеристик фазового портрета. Аттракторы могут исчезнуть или превратиться из одного в другой, могут также внезапно появиться новые аттракторы. Говорят, что такие системы структурно неустойчивы, и критические точки неустойчивости называют Поскольку типов аттракторов достаточно мало, то не много существует и различных типов бифуркации; следовательно, их можно классифицировать топологически, как и аттракторы. Одним из первых, кто в 70-е годы осуществил это, был французский математик Рене Том; он использовал термин Фрактальная геометрия В то время как в течение 60-х и 70-х гг. ученые исследовали странные аттракторы, независимо от теории хаоса была изобретена Недавно в одной из бесед Мандельбро пояснил, что фрактальная геометрия имеет дело с тем аспектом Природы, который каждому известен, но который никто еще не смог описать в формальных математических терминах24. Некоторые природные характеристики геометричны в традиционном смысле. Ствол дерева более или менее подобен цилиндру; полная Луна более или менее напоминает круглый диск; планеты движутся вокруг Солнца по более или менее эллиптическим траекториям. Однако это исключения, и Мандельбро напоминает нам: Чаще всего природа в высшей степени сложна. Как описать облако? Облако — это не сфера… Оно похоже на мяч, но очень неупорядоченно. А гора? Гора — не конус… Если вы хотите говорить о горах, реках, молнии, геометрический школьный язык оказывается совершенно неадекватным. И Мандельбро создал фрактальную геометрию — «язык, на котором можно говорить об облаках», — чтобы описывать и анализировать сложность нерегулярных форм в окружающем нас мире природы. Наиболее поразительное свойство этих «фрактальных» форм заключается в том, что их характерные паттерны многократно повторяются на нисходящих уровнях так, что их части на любом уровне по форме напоминают целое. Мандельбро иллюстрирует это свойство В природе встречается множество других примеров самоподобия. Камни в горах напоминают маленькие горы; ответвления молнии или края облаков снова и снова повторяют один и тот же паттерн; побережье моря можно делить на все более мелкие части, и в каждой из них будут проявляться подобные друг другу очертания береговой линии. Фотографии дельты реки, кроны дерева или ветвления кровеносных сосудов могут проявлять паттерны такого разительного сходства, что мы порой не можем отличить один от другого. Подобие образов совершенно различных масштабов было известно очень давно, но до Мандельбро никто не владел математическим языком для описания этого явления. Когда в середине 70-х Мандельбро опубликовал свою новаторскую книгу, он еще сам не догадывался о связи между фрактальной геометрией и теорией хаоса, но ему и его коллегам-математикам не понадобилось много времени, чтобы обнаружить, что странные аттракторы могут служить изысканнейшими примерами фракталов. Если части их структуры увеличить, то обнаруживается многослойная субструктура, в которой вновь и вновь повторяются одни и те же паттерны. В связи с этим странные аттракторы стали определять как траектории в фазовом пространстве, в которых проявляются черты фрактальной геометрии. Еще одна важная связь между теорией хаоса и фрактальной геометрией проявилась в переходе от количества к качеству. Как мы видели, невозможно предсказать значения переменных хаотической системы в определенный момент времени, но можно предсказать качественные особенности поведения системы. Точно так же, невозможно вычислить длину или площадь фрактальной формы, однако можно — качественным способом — определить степень ее изрезанности. Мандельбро подчеркнул эту существенную особенность фрактальных форм, задав провоцирующий вопрос: какова протяженность побережья Британии? Он показал, что, поскольку измеряемую длину можно растягивать до бесконечности, переходя ко все более мелкому масштабу, на этот вопрос нет однозначного ответа. Зато можно определить число в диапазоне от 1 до 2, которое характеризует изрезанность побережья. Для британского побережья это число равно около 1,58; для более изрезанного норвежского берега оно близко к 1,7027. Поскольку можно показать, что это число имеет определенные свойства размерности, Мандельбро назвал его Концепция фрактальной размерности, изначально появившаяся как чисто абстрактная математическая идея, превратилась со временем в мощный инструмент анализа сложности фрактальных форм, поскольку замечательно соответствует нашему жизненному опыту. Чем более изрезаны очертания молнии или границы облаков, чем менее сглажены формы побережий или гор, тем выше их фрактальные размерности. Чтобы смоделировать фрактальные формы, встречающиеся в природе, можно сконструировать геометрические фигуры, обладающие точным самоподобием. Основным методом для построения таких математических фракталов служит итерация, т. е. многократное повторение определенной геометрической операции. Процесс итерации, который привел нас к преобразованию пекаря — математической операции, лежащей в основе странных аттракторов, — оказался, таким образом, главной математической особенностью, объединяющей теорию хаоса с фрактальной геометрией. Одной из простейших фрактальных форм, производимых итерацией, является так называемая кривая Коха, или «кривая снежинки»27. Геометрическая операция заключается в том, чтобы разбить отрезок линии на три равные части и затем заменить центральную секцию двумя сторонами равностороннего треугольника, как показано на рис. 6-12. Повторение этой операции во все более мелких масштабах приводит к появлению кружевной снежинки (рис. 6-13). Как и в случае с изрезанной береговой линией, кривая Коха становится бесконечно длинной, если итерация продолжается бесконечно. В сущности, кривую Коха можно рассматривать как очень грубую модель береговой линии (рис. 6-14). Рис. 6-14. Моделирование береговой линии с помощью кривой Коха Рис. 6-15. Фрактальная подделка папоротника. Из Garcia (1991) Этот новый математический аппарат позволил ученым строить точные модели разнообразных нерегулярных естественных форм. Занимаясь этим моделированием, они повсеместно обнаруживали присутствие фракталов. Фрактальные паттерны облаков, которые изначально воодушевили Мандельбро на поиски нового математического языка, вероятно, самые изумительные. Их самоподобие охватывает семь порядков величин, а это означает, что если границу облака увеличить в 10 000 000 раз, она будет иметь все ту же знакомую форму. Комплексные числа Вершиной фрактальной геометрии стало открытие Мандельбро математической структуры, которая обладает ошеломляющей сложностью и все же может быть воспроизведена с помощью очень простой итеративной процедуры. Чтобы понять эту поразительную фрактальную фигуру, известную как Открытие комплексных чисел стало восхитительной главой в истории математики28. Когда в средние века возникла алгебра и математики принялись исследовать все виды уравнений и классифицировать их решения, они вскоре столкнулись с задачами, не имевшими решения в рамках множества известных им чисел. В частности, уравнения типа х + 5 = 3 заставили их расширить понятие числа до отрицательных чисел, так чтобы решение могло быть записано как х = -2. В дальнейшем так называемые действительные числа — положительные и отрицательные целые числа, дроби и иррациональные числа (например, квадратные корни или знаменитое число — 5/2 1/2 π — 4–3 -2 -1 0 1 2 3 4 Рис. 6-16 Числовая ось С таким расширением понятия числа все алгебраические уравнения, в принципе, могли быть решены — за исключением тех, где фигурировали квадратные корни отрицательных чисел. Уравнение х2 = 4 имеет два решения: х = 2 и х = -2; однако для х2 = -4, по всей видимости, не должно быть решения, поскольку ни +2, ни — 2 при возведении в квадрат не дадут -4. Древние индийские и арабские алгебраисты постоянно встречались с такими уравнениями, но отказывались даже записывать выражения типа, считая их абсолютно бессмысленными. И только в XVI веке квадратные корни отрицательных чисел стали появляться в алгебраических текстах, но и тогда авторы спешили пояснить, что такие выражения на самом деле ничего не означают. Декарт называл квадратный корень отрицательного числа «мнимым числом» и был уверен, что появление таких мнимых чисел в расчетах означает, что проблема неразрешима. Другие математики использовали термины «фиктивные», «фальшивые» или «невозможные» для обозначения величин, которые сегодня мы, с легкой руки Декарта, все еще называем Поскольку квадратный корень отрицательного числа не может быть помещен ни в одной точке числовой оси, математики, вплоть до XIX столетия, не могли наделить эти величины никаким реальным смыслом. Великий Лейбниц, изобретатель дифференциального исчисления, приписывал выражению мистические свойства, видя в нем проявление Божественного Духа и называя его «этой амфибией между бытием и небытием»29. Столетие спустя Леонард Эйлер, самый плодотворный математик всех времен, выразил ту же мысль в своей Следовательно, все такие выражения, как, и т. п., есть невозможные, или мнимые числа, поскольку представляют корни отрицательных величин; по поводу таких чисел мы можем достоверно утверждать, что они ни ничто, ни нечто большее, чем ничто, ни нечто меньшее, чем ничто, из чего неизбежно следует, что они мнимы, или невозможны30. В XIX веке другой математический гений, Карл Фридрих Гаусс, окончательно и твердо провозгласил, что «этим мнимым сущностям может быть приписано объективное бытие»31. Гаусс, конечно, понимал, что мнимым числам не найдется места на числовой оси, а поэтому он попросту поместил их на перпендикулярную ось, которую провел через нулевую точку основной оси, построив таким образом декартову систему координат. В этой системе все действительные числа располагаются на действительной оси, а все мнимые числа — на мнимой оси (рис. 6-17 называется мнимой единицей и обозначается символом i. А поскольку любой квадратный корень отрицательного числа всегда может быть представлен как = = Таким остроумным способом Гаусс создал прибежище не только для мнимых чисел, но и для всех возможных комбинаций действительных и мнимых чисел, например, (2 + i), (3 — z = х + iy, где Введя это определение, Гаусс создал специальную алгебру комплексных чисел и разработал множество фундаментальных идей в области функций комплексного переменного. В конце концов это привело к появлению целого раздела математики, известного как комплексный анализ, который выделяется огромным диапазоном применений в самых разнообразных областях науки. Рис. 6-17. Комплексная плоскость Паттерны внутри паттернов Причина, по которой мы затеяли этот экскурс в историю комплексных чисел, заключается в том, что многие фрактальные формы могут быть воспроизведены математически, с помощью итеративных процедур на комплексной плоскости. В конце 70-х годов, опубликовав свою новаторскую книгу, Мандельбро обратил внимание на особый класс математических фракталов, известных как В основу множества Жулиа положено простое отображение Z→ Z2 + С, Где Чтобы определить тип множества Жулиа для определенной константы с, итерацию необходимо каждый раз выполнить для нескольких тысяч точек, пока не выяснится, продолжают ли значения увеличиваться или остаются конечными. Если конечные точки помечать черным Цветом, а те, что продолжают увеличиваться, — белым, множество Жулиа в конце концов проявится в виде черной фигуры. Вся процедура очень проста, но занимает много времени. Очевидно, необходимо использование высокоскоростного компьютера, чтобы получить точную форму за приемлемое время. Для каждой константы с можно получить различные множества Жулиа, поэтому число этих множеств неограниченно. Некоторые из них представляют собой отдельные, связанные между собой части; другие распадаются на несколько изолированных частей; а третьи выглядят так, будто они рассыпались на мелкие осколки (рис. 6-18). Все множества отличаются неровными, изрезанными очертаниями, что характерно для фракталов, и большинство из них невозможно описать языком классической геометрии. «Получается невообразимое разнообразие множеств Жулиа, — восхищается французский математик Адриен Дуади. — Одни напоминают плотные облака, другие — тощий куст ежевики, а некоторые похожи на искры, парящие в воздухе после фейерверка. Встречается форма кролика, многие напоминают хвосты морских коньков»34. Рис. 6-18. Разнообразие множеств Жулиа. Из PeitigenandRichter (1986) Богатство и разнообразие форм, многие из которых напоминают живые создания, просто поражает. Однако настоящие чудеса начинаются, когда мы увеличиваем очертания любой части множества Жулиа. Как и в случае с облаком или береговой линией, такое же богатство отображается на всех уровнях диапазона исследования. С увеличением степени разрешения (т. е. когда все больше и больше знаков после точки учитывается при вычислении числа Когда Мандельбро в конце 70-х годов анализировал различные математические проявления множеств Жулиа, пытаясь классифицировать их бесконечное многообразие, он открыл очень простой способ создания единого изображения на комплексной плоскости, которое может служить своеобразным каталогом всех возможных множеств Жулиа. Это изображение, с тех пор ставшее основным визуальным символом новой математики сложных систем, называется Рис. 6-19. Множество Мандельбро. Из PeitgenandRichter (1986) Генерирование множеств Жулиа для нескольких тысяч значений В то время как существует бесконечное количество множеств Жулиа, множество Мандельбро уникально. Эта странная фигура представляет собой самый сложный математический объект из всех когда-либо изобретенных. И хотя правила его построения очень просты, многообразие и сложность, которые он проявляет при ближайшем рассмотрении, просто невероятны. Когда множество Мандельбро строится на фиксированной координатной сетке, на экране компьютера появляются два диска: меньший имеет относительно круглую форму, больший отдаленно напоминает очертания сердца. На каждом из двух дисков выделяется несколько небольших дискообразных наростов, расположенных вдоль границ диска, а дальнейшее повышение разрешения выявляет изобилие все более мелких наростов, напоминающих колючие шипы. Начиная с этого момента, богатство образов, выявляемых расширением границ множества (т. е. повышением разрешающей способности вычислений), почти не поддается описанию. Такое путешествие вглубь множества Мандельбро, особенно зафиксированное на видеопленке, представляет собой незабываемый опыт36. По мере того как масштаб съемки растет и изображение границы укрупняется, кажется, что прорастают побеги и усики, которые, после очередного увеличения, растворяются в огромном количестве форм — спиралей внутри спиралей, морских коньков и водоворотов, снова и снова повторяющих одни и те же паттерны (рис. 6-20). Рис. 6-20. Стадии путешествия вглубь множества Мандельбро. На каждой фотографии область последующего увеличения помечена белой рамкой. Из PeitgenandRichter (1986) На каждой стадии изменения масштаба этого фантастического путешествия — в ходе которого мощности сегодняшних компьютеров обеспечивают 100 000 000-кратное увеличение! — картина напоминает причудливо изрезанное побережье; образы, изобилующие в узорах этого «побережья», удивительно напоминают органические существа во всей их бесконечной сложности. И на каждом шагу нас ждет головокружительное открытие: мы снова и снова обнаруживаем мельчайшую копию всего множества Мандельбро, глубоко запрятанную в структуре его границы. Как только изображение множества Мандельбро появилось в августе 1985 года на обложке Термин Множество Мандельбро можно рассматривать как склад, резервуар паттернов с их бесконечными деталями и вариациями. Строго говоря, оно не самоподобно, поскольку не только снова и снова повторяет одни и те же паттерны, включая маленькие копии всего множества, но и содержит, кроме этого, элементы из бесконечного набора множеств Жулиа! Таким образом, это сверхфрактал непостижимой сложности. И вместе с тем эта структура, превосходящая своей сложностью все пределы человеческого воображения, строится на основе нескольких очень простых правил. Другими словами, фрактальная геометрия, как и теория хаоса, вынудила ученых и математиков пересмотреть само понятие сложности. В классической математике простые формулы соответствуют простым формам, сложные формулы — сложным формам. В новой математике сложных систем ситуация радикально другая. Простые уравнения могут генерировать поразительно сложные странные аттракторы, а простые правила итерации порождают структуры более сложные, чем мы можем себе представить. Мандельбро видит в этом новое волнующее направление в науке: Это очень оптимистичный результат, потому что в конце концов изначальный смысл изучения хаоса состоял в попытке найти простые законы в окружающей нас Вселенной… Человек всегда направляет свои усилия на поиск простых объяснений для сложных реальностей. Однако контраст между простотой и сложностью никогда еще не был сравним с тем, что мы находим здесь39. Огромный интерес к фрактальной геометрии распространился далеко за пределы математического сообщества. Мандельбро видит в этом здоровое направление развития общества. Он надеется, что это положит конец изоляции математики от других видов человеческой деятельности и повсеместному игнорированию математического языка даже среди людей, в общем, высокообразованных. Эта изоляция математики — поразительный показатель нашей интеллектуальной разобщенности, и в этом смысле она относительно нова. На протяжении нескольких веков многие великие математики вносили выдающийся вклад и в другие области. Так, в XI веке, персидский поэт Омар Хайям, всемирно известный автор Эти примеры, к которым можно добавить не один десяток других, показывают, что на протяжении всей нашей интеллектуальной истории математика никогда не была изолирована от других сфер человеческого знания и деятельности. В XX веке, однако, прогрессирующий редукционизм, фрагментация и специализация привели к крайней степени изоляции математики даже внутри научного сообщества. Так, теоретик хаоса Ральф Эбрем вспоминает: Когда я начал свою профессиональную деятельность в математике в 1960 году, то есть не так уж давно, математика во всей ее полноте отвергалась физиками, включая и самых авангардных математических физиков… Было отвергнуто все, что еще год или два назад использовал Эйнштейн… Физики отказывали старшекурсникам в разрешении на посещение математических курсов, проводимых математиками: «Учитесь математике у нас. Мы научим вас тому, что вам следует знать»… Это было в 1960 году. К 1968 году ситуация изменилась полностью40. Великое очарование теорией хаоса и фрактальной геометрией, распространившееся среди людей, которые работают в разных областях — от ученых до менеджеров и художников, — возможно, и в самом деле свидетельствует, что изоляции математики приходит конец. В наше время новая математика сложных систем все чаще побуждает людей к осознанию того, что математика вообще — это нечто намного большее, чем сухие формулы; что понимание паттерна — необходимый путь к пониманию окружающего нас живого мира; и что все проблемы паттерна, порядка и сложности — это проблемы существенно математического характера. |
|
|